top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis [[electronic resource] ] : First International Workshop, DATRA 2018 and Third International Workshop, PIPPI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Andrew Melbourne, Roxane Licandro, Matthew DiFranco, Paolo Rota, Melanie Gau, Martin Kampel, Rosalind Aughwane, Pim Moeskops, Ernst Schwartz, Emma Robinson, Antonios Makropoulos
Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis [[electronic resource] ] : First International Workshop, DATRA 2018 and Third International Workshop, PIPPI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Andrew Melbourne, Roxane Licandro, Matthew DiFranco, Paolo Rota, Melanie Gau, Martin Kampel, Rosalind Aughwane, Pim Moeskops, Ernst Schwartz, Emma Robinson, Antonios Makropoulos
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XI, 180 p. 74 illus.)
Disciplina 616.07540285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Health informatics
Arithmetic and logic units, Computer
Artificial Intelligence
Image Processing and Computer Vision
Health Informatics
Arithmetic and Logic Structures
ISBN 3-030-00807-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DeepCS: Deep Convolutional Neural Network and SVM based Single Image Super-Resolution -- Automatic Segmentation of Thigh Muscle in Longitudinal 3D T1-Weighted Magnetic Resonance (MR) Images -- Detecting Bone Lesions in Multiple Myeloma Patient Using Transfer Learning -- Quantification of Local Metabolic Tumor Volume Changes by Registering Blended PET-CT Images for Prediction of Pathologic Tumor Response -- Optimizing External Surface Sensor Locations for Respiratory Tumor Motion Prediction -- Segmentation of Fetal Adipose Tissue Using Efficient CNNs for Portable Ultrasound -- Automatic Shadow Detection in 2D Ultrasound Images -- Multi-Channel Groupwise Registration to Construct and Ultrasound-Specific Fetal Brain Atlas -- Investigating Brain Age Deviation in Preterm Infants: A Deep Learning Approach -- Segmentation of Pelvic Vessels in Pediatric MRI Using a Patch-Based Deep Learning Approach -- Multi-View Image Reconstruction: Application to Fetal Ultrasound Compounding -- EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging Without External Trackers -- Better Feature Matching for Placental Panorama Construction -- Combining Deep Learning and Multi-Atlas Label Fusion for Automated Placenta Segmentation from 3DUS -- LSTM Spatial Co-transformer Networks for Registration of 3D Fetal US and MR Brain Images -- Automatic and Efficient Standard Plane Recognition in Fetal Ultrasound Images via Multi-Scale Dense Networks -- Paediatric Liver Segmentation for Low-Contrast CT Images.
Record Nr. UNISA-996466200903316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis : First International Workshop, DATRA 2018 and Third International Workshop, PIPPI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Andrew Melbourne, Roxane Licandro, Matthew DiFranco, Paolo Rota, Melanie Gau, Martin Kampel, Rosalind Aughwane, Pim Moeskops, Ernst Schwartz, Emma Robinson, Antonios Makropoulos
Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis : First International Workshop, DATRA 2018 and Third International Workshop, PIPPI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Andrew Melbourne, Roxane Licandro, Matthew DiFranco, Paolo Rota, Melanie Gau, Martin Kampel, Rosalind Aughwane, Pim Moeskops, Ernst Schwartz, Emma Robinson, Antonios Makropoulos
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XI, 180 p. 74 illus.)
Disciplina 616.07540285
616.0757
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Health informatics
Arithmetic and logic units, Computer
Artificial Intelligence
Image Processing and Computer Vision
Health Informatics
Arithmetic and Logic Structures
ISBN 3-030-00807-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DeepCS: Deep Convolutional Neural Network and SVM based Single Image Super-Resolution -- Automatic Segmentation of Thigh Muscle in Longitudinal 3D T1-Weighted Magnetic Resonance (MR) Images -- Detecting Bone Lesions in Multiple Myeloma Patient Using Transfer Learning -- Quantification of Local Metabolic Tumor Volume Changes by Registering Blended PET-CT Images for Prediction of Pathologic Tumor Response -- Optimizing External Surface Sensor Locations for Respiratory Tumor Motion Prediction -- Segmentation of Fetal Adipose Tissue Using Efficient CNNs for Portable Ultrasound -- Automatic Shadow Detection in 2D Ultrasound Images -- Multi-Channel Groupwise Registration to Construct and Ultrasound-Specific Fetal Brain Atlas -- Investigating Brain Age Deviation in Preterm Infants: A Deep Learning Approach -- Segmentation of Pelvic Vessels in Pediatric MRI Using a Patch-Based Deep Learning Approach -- Multi-View Image Reconstruction: Application to Fetal Ultrasound Compounding -- EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging Without External Trackers -- Better Feature Matching for Placental Panorama Construction -- Combining Deep Learning and Multi-Atlas Label Fusion for Automated Placenta Segmentation from 3DUS -- LSTM Spatial Co-transformer Networks for Registration of 3D Fetal US and MR Brain Images -- Automatic and Efficient Standard Plane Recognition in Fetal Ultrasound Images via Multi-Scale Dense Networks -- Paediatric Liver Segmentation for Low-Contrast CT Images.
Record Nr. UNINA-9910349404603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perinatal, preterm and paediatric image analysis : 7th international workshop, PIPPI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Roxane Licandro [and four others]
Perinatal, preterm and paediatric image analysis : 7th international workshop, PIPPI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Roxane Licandro [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (127 pages)
Disciplina 943.005
Collana Lecture Notes in Computer Science Ser.
Soggetto topico Electronic data processing
Punched card systems
ISBN 3-031-17117-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Automatic Segmentation of the Placenta in BOLD MRI Time Series -- 1 Introduction -- 2 Methods -- 2.1 Model -- 2.2 Additive Boundary Loss -- 2.3 Implementation Details -- 3 Model Evaluation -- 3.1 Data -- 3.2 Evaluation -- 3.3 Results -- 4 Discussion and Conclusion -- References -- A Fast Anatomical and Quantitative MRI Fetal Exam at Low Field -- 1 Introduction -- 2 Methods -- 2.1 Evaluation -- 2.2 Analysis -- 3 Results -- 4 Discussion and Conclusions -- References -- Automatic Fetal Fat Quantification from MRI -- 1 Introduction -- 2 Methodology -- 2.1 Semi-automatic Fetal AT Segmentation -- 2.2 Automatic Fetal Fat Segmentation -- 3 Experimental Results -- 3.1 Study 1: Manual and Semi-automatic Observer Variability -- 3.2 Study 2: Automatic Fetal AT Segmentation -- 3.3 Study 3: Analysis of Manual Corrections Following Automatic Segmentation -- 4 Discussion -- 5 Conclusion -- References -- Continuous Longitudinal Fetus Brain Atlas Construction via Implicit Neural Representation -- 1 Introduction -- 2 Method -- 2.1 Pre-train Stage -- 2.2 Refine Stage -- 2.3 Inference Stage -- 3 Experiments -- 3.1 Setup -- 3.2 Results -- 4 Conclusion -- References -- Automated Segmentation of Cervical Anatomy to Interrogate Preterm Birth -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Model Architecture -- 3 Results -- 4 Conclusion -- References -- Deep Learning Framework for Real-Time Fetal Brain Segmentation in MRI -- 1 Introduction -- 2 Materials and Methods -- 2.1 Proposed Network Architecture -- 2.2 Alternative Methods and Evaluation Metrics -- 2.3 Data, Implementation, and Training -- 3 Results -- 4 Analysis and Discussion -- 5 Conclusion -- References -- Attention-Driven Multi-channel Deformable Registration of Structural and Microstructural Neonatal Data -- 1 Introduction -- 2 Method -- 3 Results.
4 Conclusion -- References -- Automated Multi-class Fetal Cardiac Vessel Segmentation in Aortic Arch Anomalies Using T2-Weighted 3D Fetal MRI -- 1 Introduction -- 1.1 Deep Learning Segmentation -- 1.2 Label Propagation -- 1.3 Contribution -- 2 Methods -- 2.1 Data Specifications -- 2.2 Deep Learning Segmentation Framework -- 2.3 Label Propagation -- 2.4 Attention U-Net Segmentation -- 3 Results -- 3.1 Preliminary Network Architecture Experiments -- 3.2 Test Set and Experiments -- 3.3 Quantitative Results -- 3.4 Visual Inspection -- 4 Discussion -- 5 Conclusion -- References -- Segmentation of Periventricular White Matter in Neonatal Brain MRI: Analysis of Brain Maturation in Term and Preterm Cohorts -- 1 Introduction -- 2 Methods -- 2.1 Cohort, Datasets and Preprocessing -- 2.2 Parcellation Map of Periventricular WM ROIs in the Atlas Space -- 2.3 Automated Segmentation of Periventricular WM ROIs -- 2.4 Quantitative Analysis of PWM in Term and Preterm Cohorts -- 3 Results and Discussion -- 3.1 Parcellation Map of Periventricular WM ROIs in the Atlas Space -- 3.2 Automated Segmentation of Periventricular WM ROIs -- 3.3 Quantitative Analysis of PWM in Term and Preterm Cohorts -- 4 Conclusions -- References -- Knowledge-Guided Segmentation of Isointense Infant Brain -- 1 Introduction -- 2 Methodology -- 2.1 Dataset and Atlas -- 2.2 Data Preparation -- 2.3 Deep Learning Network -- 2.4 Implementation Details -- 3 Experiments and Results -- 3.1 iSeg19 Validation Dataset -- 4 Discussion and Conclusions -- References -- Author Index.
Record Nr. UNISA-996490353203316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Perinatal, Preterm and Paediatric Image Analysis : 7th International Workshop, PIPPI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Roxane Licandro, Andrew Melbourne, Esra Abaci Turk, Christopher Macgowan, Jana Hutter
Perinatal, Preterm and Paediatric Image Analysis : 7th International Workshop, PIPPI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Roxane Licandro, Andrew Melbourne, Esra Abaci Turk, Christopher Macgowan, Jana Hutter
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (127 pages)
Disciplina 943.005
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Artificial intelligence
Application software
Computer Imaging, Vision, Pattern Recognition and Graphics
Artificial Intelligence
Computer and Information Systems Applications
Diagnòstic per la imatge
Pediatria
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031171178
3031171179
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Automatic Segmentation of the Placenta in BOLD MRI Time Series -- 1 Introduction -- 2 Methods -- 2.1 Model -- 2.2 Additive Boundary Loss -- 2.3 Implementation Details -- 3 Model Evaluation -- 3.1 Data -- 3.2 Evaluation -- 3.3 Results -- 4 Discussion and Conclusion -- References -- A Fast Anatomical and Quantitative MRI Fetal Exam at Low Field -- 1 Introduction -- 2 Methods -- 2.1 Evaluation -- 2.2 Analysis -- 3 Results -- 4 Discussion and Conclusions -- References -- Automatic Fetal Fat Quantification from MRI -- 1 Introduction -- 2 Methodology -- 2.1 Semi-automatic Fetal AT Segmentation -- 2.2 Automatic Fetal Fat Segmentation -- 3 Experimental Results -- 3.1 Study 1: Manual and Semi-automatic Observer Variability -- 3.2 Study 2: Automatic Fetal AT Segmentation -- 3.3 Study 3: Analysis of Manual Corrections Following Automatic Segmentation -- 4 Discussion -- 5 Conclusion -- References -- Continuous Longitudinal Fetus Brain Atlas Construction via Implicit Neural Representation -- 1 Introduction -- 2 Method -- 2.1 Pre-train Stage -- 2.2 Refine Stage -- 2.3 Inference Stage -- 3 Experiments -- 3.1 Setup -- 3.2 Results -- 4 Conclusion -- References -- Automated Segmentation of Cervical Anatomy to Interrogate Preterm Birth -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Model Architecture -- 3 Results -- 4 Conclusion -- References -- Deep Learning Framework for Real-Time Fetal Brain Segmentation in MRI -- 1 Introduction -- 2 Materials and Methods -- 2.1 Proposed Network Architecture -- 2.2 Alternative Methods and Evaluation Metrics -- 2.3 Data, Implementation, and Training -- 3 Results -- 4 Analysis and Discussion -- 5 Conclusion -- References -- Attention-Driven Multi-channel Deformable Registration of Structural and Microstructural Neonatal Data -- 1 Introduction -- 2 Method -- 3 Results.
4 Conclusion -- References -- Automated Multi-class Fetal Cardiac Vessel Segmentation in Aortic Arch Anomalies Using T2-Weighted 3D Fetal MRI -- 1 Introduction -- 1.1 Deep Learning Segmentation -- 1.2 Label Propagation -- 1.3 Contribution -- 2 Methods -- 2.1 Data Specifications -- 2.2 Deep Learning Segmentation Framework -- 2.3 Label Propagation -- 2.4 Attention U-Net Segmentation -- 3 Results -- 3.1 Preliminary Network Architecture Experiments -- 3.2 Test Set and Experiments -- 3.3 Quantitative Results -- 3.4 Visual Inspection -- 4 Discussion -- 5 Conclusion -- References -- Segmentation of Periventricular White Matter in Neonatal Brain MRI: Analysis of Brain Maturation in Term and Preterm Cohorts -- 1 Introduction -- 2 Methods -- 2.1 Cohort, Datasets and Preprocessing -- 2.2 Parcellation Map of Periventricular WM ROIs in the Atlas Space -- 2.3 Automated Segmentation of Periventricular WM ROIs -- 2.4 Quantitative Analysis of PWM in Term and Preterm Cohorts -- 3 Results and Discussion -- 3.1 Parcellation Map of Periventricular WM ROIs in the Atlas Space -- 3.2 Automated Segmentation of Periventricular WM ROIs -- 3.3 Quantitative Analysis of PWM in Term and Preterm Cohorts -- 4 Conclusions -- References -- Knowledge-Guided Segmentation of Isointense Infant Brain -- 1 Introduction -- 2 Methodology -- 2.1 Dataset and Atlas -- 2.2 Data Preparation -- 2.3 Deep Learning Network -- 2.4 Implementation Details -- 3 Experiments and Results -- 3.1 iSeg19 Validation Dataset -- 4 Discussion and Conclusions -- References -- Author Index.
Record Nr. UNINA-9910595031203321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis [[electronic resource] ] : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis [[electronic resource] ] : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 190 p. 97 illus., 68 illus. in color.)
Disciplina 618.207543
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Application software
Computer organization
Artificial Intelligence
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Applications
Computer Systems Organization and Communication Networks
ISBN 3-030-32875-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto First Workshop on Smart UltraSound Imaging -- Straight to the point: reinforcement learning for user guidance in ultrasound -- Registration of Untracked 2D Laparoscopic Ultrasound Liver Images to CT using Content-based Retrieval and Kinematic Priors -- Direct Detection and Measurement of Nuchal Translucency with Neural Networks from Ultrasound Images -- Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach -- SPRNet: Automatic Fetal Standard Plane Recognition Network for Ultrasound Images -- Representation Disentanglement for Multi-task Learning with application to Fetal Ultrasound -- Adversarial Learning for Deformable Image Registration: Application to 3D Ultrasound Image Fusion -- Monitoring Achilles tendon healing progress in ultrasound imaging with convolutional neural networks -- Deep Learning-based Pneumothorax Detection in Ultrasound Videos -- Deep Learning Based Minimum Variance Beamforming for Ultrasound Imaging -- 4th Workshop on Perinatal, Preterm and Paediatric Image Analysis -- Estimation of preterm birth markers with U-Net segmentation network -- Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach -- Dual Network Generative Adversarial Networks for Pediatric Echocardiography Segmentation -- Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI -- Plug-and-Play Priors for Reconstruction-based Placental Image Registration -- A Longitudinal Study of the Evolution of the Central Sulcus’ Shape in Preterm Infants using Manifold Learning -- Prediction of failure of induction of labor (IOL) from ultrasound images using radioman features -- Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair -- Quantifying Residual Motion Artifacts in Fetal fMRI Data -- Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR.
Record Nr. UNISA-996466302703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 190 p. 97 illus., 68 illus. in color.)
Disciplina 618.207543
616.07543
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Image processing - Digital techniques
Computer vision
Application software
Computer engineering
Computer networks
Artificial Intelligence
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer and Information Systems Applications
Computer Engineering and Networks
ISBN 3-030-32875-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto First Workshop on Smart UltraSound Imaging -- Straight to the point: reinforcement learning for user guidance in ultrasound -- Registration of Untracked 2D Laparoscopic Ultrasound Liver Images to CT using Content-based Retrieval and Kinematic Priors -- Direct Detection and Measurement of Nuchal Translucency with Neural Networks from Ultrasound Images -- Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach -- SPRNet: Automatic Fetal Standard Plane Recognition Network for Ultrasound Images -- Representation Disentanglement for Multi-task Learning with application to Fetal Ultrasound -- Adversarial Learning for Deformable Image Registration: Application to 3D Ultrasound Image Fusion -- Monitoring Achilles tendon healing progress in ultrasound imaging with convolutional neural networks -- Deep Learning-based Pneumothorax Detection in Ultrasound Videos -- Deep Learning Based Minimum Variance Beamforming for Ultrasound Imaging -- 4th Workshop on Perinatal, Preterm and Paediatric Image Analysis -- Estimation of preterm birth markers with U-Net segmentation network -- Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach -- Dual Network Generative Adversarial Networks for Pediatric Echocardiography Segmentation -- Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI -- Plug-and-Play Priors for Reconstruction-based Placental Image Registration -- A Longitudinal Study of the Evolution of the Central Sulcus’ Shape in Preterm Infants using Manifold Learning -- Prediction of failure of induction of labor (IOL) from ultrasound images using radioman features -- Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair -- Quantifying Residual Motion Artifacts in Fetal fMRI Data -- Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR.
Record Nr. UNINA-9910349272603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui