Global LAnd Surface Satellite (GLASS) Products : Algorithms, Validation and Analysis / / by Shunlin Liang, Xiaotong Zhang, Zhiqiang Xiao, Jie Cheng, Qiang Liu, Xiang Zhao |
Autore | Liang Shunlin |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (171 p.) |
Disciplina | 628 |
Collana | SpringerBriefs in Earth Sciences |
Soggetto topico |
Remote sensing
Physical geography Environmental sciences Remote Sensing/Photogrammetry Physical Geography Environmental Science and Engineering |
ISBN | 3-319-02588-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Leaf Area Index -- Shortwave Albedo -- Longwave Emissivity -- Incident Shortwave Radiation -- Incident Photosynthetic Active Radiation -- Challenges and prospects. |
Record Nr. | UNINA-9910298362703321 |
Liang Shunlin
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang |
Autore | Liang Shunlin |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina |
550.287
550/.28/7 624.151 |
Collana | Wiley series in remote sensing |
Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-25291-X
9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
Record Nr. | UNINA-9910146075803321 |
Liang Shunlin
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang |
Autore | Liang Shunlin |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina |
550.287
550/.28/7 624.151 |
Collana | Wiley series in remote sensing |
Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
ISBN |
1-280-25291-X
9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
Record Nr. | UNINA-9910831060403321 |
Liang Shunlin
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantitative remote sensing of land surfaces / / Shunlin Liang |
Autore | Liang Shunlin |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina | 550/.28/7 |
Collana | Wiley series in remote sensing |
Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
ISBN |
1-280-25291-X
9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
Record Nr. | UNINA-9910877843603321 |
Liang Shunlin
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Remotely Sensed Albedo |
Autore | Liang Shunlin |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (250 p.) |
Soggetto topico |
Research & information: general
Environmental economics |
Soggetto non controllato |
surface albedo
urbanization vegetation variation climate change DMSP albedo land use remote sensing Unmanned Aerial Vehicles vegetation indices snow climate Unmanned Aerial Vehicle (UAV) landscape consumer-grade camera radiometric calibration sea ice VIIRS Arctic PROMICE GC-NET validation AVHRR BRDF MODIS VJB LTDR directional correction spatial representativeness semivariogram Landsat HLS Sentinel 2 SURFRAD OzFlux directional hemispherical reflectance bi-hemispherical reflectance tower albedometer CGLS MISR upscaling bare soil albedo MODIS albedo contiguous United States soil line Landsat albedo soil moisture land surface albedo time series high spatio-temporal resolution EnKF spectral unmixing empirical modeling linear endmember forest cover forest management forest structure BRDF/Albedo NDSI Snow Cover |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557135603321 |
Liang Shunlin
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|