Global LAnd Surface Satellite (GLASS) Products : Algorithms, Validation and Analysis / / by Shunlin Liang, Xiaotong Zhang, Zhiqiang Xiao, Jie Cheng, Qiang Liu, Xiang Zhao
| Global LAnd Surface Satellite (GLASS) Products : Algorithms, Validation and Analysis / / by Shunlin Liang, Xiaotong Zhang, Zhiqiang Xiao, Jie Cheng, Qiang Liu, Xiang Zhao |
| Autore | Liang Shunlin |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (171 p.) |
| Disciplina | 628 |
| Collana | SpringerBriefs in Earth Sciences |
| Soggetto topico |
Remote sensing
Physical geography Environmental sciences Remote Sensing/Photogrammetry Physical Geography Environmental Science and Engineering |
| ISBN | 3-319-02588-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Leaf Area Index -- Shortwave Albedo -- Longwave Emissivity -- Incident Shortwave Radiation -- Incident Photosynthetic Active Radiation -- Challenges and prospects. |
| Record Nr. | UNINA-9910298362703321 |
Liang Shunlin
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang
| Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang |
| Autore | Liang Shunlin |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
| Descrizione fisica | 1 online resource (562 p.) |
| Disciplina |
550.287
550/.28/7 624.151 |
| Collana | Wiley series in remote sensing |
| Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-25291-X
9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
| Record Nr. | UNINA-9910146075803321 |
Liang Shunlin
|
||
| Hoboken, N.J., : Wiley-Interscience, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang
| Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang |
| Autore | Liang Shunlin |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
| Descrizione fisica | 1 online resource (562 p.) |
| Disciplina |
550.287
550/.28/7 624.151 |
| Collana | Wiley series in remote sensing |
| Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
| ISBN |
1-280-25291-X
9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
| Record Nr. | UNINA-9910831060403321 |
Liang Shunlin
|
||
| Hoboken, N.J., : Wiley-Interscience, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantitative remote sensing of land surfaces / / Shunlin Liang
| Quantitative remote sensing of land surfaces / / Shunlin Liang |
| Autore | Liang Shunlin |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
| Descrizione fisica | 1 online resource (562 p.) |
| Disciplina | 550/.28/7 |
| Collana | Wiley series in remote sensing |
| Soggetto topico |
Earth sciences - Remote sensing
Environmental sciences - Remote sensing Remote sensing |
| ISBN |
9786610252916
9781280252914 128025291X 9780470348000 0470348003 9780471723714 0471723711 9780471723721 047172372X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
QUANTITATIVE REMOTE SENSING OF LAND SURFACES; Contents; Preface; Acronyms; CHAPTER 1 Introduction; 1.1 Quantitative Models in Optical Remote Sensing; 1.2 Basic Concepts; 1.2.1 Digital Numbers; 1.2.2 Radiance; 1.2.3 Solid Angle; 1.2.4 lrradiance; 1.2.5 Bidirectional Reflectances and Albedos; 1.2.6 Extraterrestrial Solar lrradiance; 1.3 Remote Sensing Modeling System; 1.3.1 Scene Generation; 1.3.2 Scene Radiation Modeling; 1.3.3 Atmospheric Radiative Transfer Modeling; 1.3.4 Navigation Modeling; 1.3.5 Sensor Modeling; 1.3.5.1 Spectral Response; 1.3.5.2 Spatial Response
1.3.6 Mapping and Binning1.4 Summary; References; CHAPTER 2 Atmospheric Shortwave Radiative Transfer Modeling; 2.1 Radiative Transfer Equation .; 2.2 Surface Statistical BRDF Models; 2.2.1 Minnaert Function; 2.2.2 Lommel-Seeliger Function; 2.2.3 Walthall Function; 2.2.4 Staylor-Suttles Function; 2.2.5 Rahman Function; 2.2.6 Kernel Functions; 2.3 Atmospheric Optical Properties; 2.3.1 Rayleigh Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models3.2.1 "Plate" Models; 3.2.2 Needleleaf Models; 3.2.3 Ray Tracing Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.3.1 Approximate Solutions; 3.3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.1.5 SPRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil |
| Record Nr. | UNINA-9911020444203321 |
Liang Shunlin
|
||
| Hoboken, N.J., : Wiley-Interscience, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Remotely Sensed Albedo
| Remotely Sensed Albedo |
| Autore | Liang Shunlin |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (250 p.) |
| Soggetto topico |
Environmental economics
Research & information: general |
| Soggetto non controllato |
albedo
Arctic AVHRR bare soil albedo bi-hemispherical reflectance BRDF BRDF/Albedo CGLS climate climate change consumer-grade camera contiguous United States directional correction directional hemispherical reflectance DMSP empirical modeling EnKF forest cover forest management forest structure GC-NET high spatio-temporal resolution HLS land surface albedo land use Landsat Landsat albedo landscape linear endmember LTDR MISR MODIS MODIS albedo n/a NDSI Snow Cover OzFlux PROMICE radiometric calibration remote sensing sea ice semivariogram Sentinel 2 snow soil line soil moisture spatial representativeness spectral unmixing surface albedo SURFRAD time series tower albedometer Unmanned Aerial Vehicle (UAV) Unmanned Aerial Vehicles upscaling urbanization validation vegetation indices vegetation variation VIIRS VJB |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557135603321 |
Liang Shunlin
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||