Biological data mining and its applications in healthcare / / editors, Xiaoli Li (ASTAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), Jason T.L. Wang (New Jersey Institute of Technology, USA) |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (437 p.) |
Disciplina | 610.285 |
Altri autori (Persone) |
LiXiao-Li <1969->
NgSee-Kiong WangJason T. L |
Collana | Science, engineering, and biology infomatics |
Soggetto topico |
Medical informatics
Bioinformatics Data mining |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4551-01-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | part I. Sequence analysis -- part II. Biological network mining -- part III. Classification, trend analysis and 3D medical images -- part IV. Text mining and its biomedical applications. |
Record Nr. | UNINA-9910453636303321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biological data mining and its applications in healthcare / / editors, Xiaoli Li, ASTAR, Singapore & Nanyang Technological University, Singapore, See-Kiong Ng, A*STAR, Singapore, Jason T.L. Wang, New Jersey Institute of Technology, USA |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (xvi, 420 pages) : illustrations (some color) |
Disciplina | 610.285 |
Collana | Science, engineering, and biology infomatics |
Soggetto topico |
Medical informatics
Bioinformatics Data mining |
ISBN | 981-4551-01-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | part I. Sequence analysis -- part II. Biological network mining -- part III. Classification, trend analysis and 3D medical images -- part IV. Text mining and its biomedical applications. |
Record Nr. | UNINA-9910790973403321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biological data mining and its applications in healthcare / / editors, Xiaoli Li, ASTAR, Singapore & Nanyang Technological University, Singapore, See-Kiong Ng, A*STAR, Singapore, Jason T.L. Wang, New Jersey Institute of Technology, USA |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (xvi, 420 pages) : illustrations (some color) |
Disciplina | 610.285 |
Collana | Science, engineering, and biology infomatics |
Soggetto topico |
Medical informatics
Bioinformatics Data mining |
ISBN | 981-4551-01-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | part I. Sequence analysis -- part II. Biological network mining -- part III. Classification, trend analysis and 3D medical images -- part IV. Text mining and its biomedical applications. |
Record Nr. | UNINA-9910807350403321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep learning for human activity recognition : Second International Workshop, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, proceedings / / Xiaoli Li [and three others] (editors) |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XII, 139 p. 51 illus., 49 illus. in color.) |
Disciplina | 006.31 |
Collana | Communications in computer and information science |
Soggetto topico | Machine learning |
ISBN | 981-16-0575-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human Activity Recognition using Wearable Sensors: Review, Challenges, Evaluation Benchmark -- Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility by Deep Neural Networks -- Toward Data Augmentation and Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition -- Personalization Models for Human Activity Recognition With Distribution Matching-Based Metrics -- Resource-Constrained Federated Learning with Heterogeneous Labels and Models for Human Activity Recognition -- ARID: A New Dataset for Recognizing Action in the Dark -- Single Run Action Detector over Video Stream - A Privacy Preserving Approach -- Efficacy of Model Fine-Tuning for Personalized Dynamic Gesture Recognition -- Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for Activity Recognition in Smart Homes -- Towards User Friendly Medication Mapping Using Entity-Boosted Two-Tower Neural Network. |
Record Nr. | UNINA-9910485020703321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep learning for human activity recognition : Second International Workshop, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, proceedings / / Xiaoli Li [and three others] (editors) |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XII, 139 p. 51 illus., 49 illus. in color.) |
Disciplina | 006.31 |
Collana | Communications in computer and information science |
Soggetto topico | Machine learning |
ISBN | 981-16-0575-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human Activity Recognition using Wearable Sensors: Review, Challenges, Evaluation Benchmark -- Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility by Deep Neural Networks -- Toward Data Augmentation and Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition -- Personalization Models for Human Activity Recognition With Distribution Matching-Based Metrics -- Resource-Constrained Federated Learning with Heterogeneous Labels and Models for Human Activity Recognition -- ARID: A New Dataset for Recognizing Action in the Dark -- Single Run Action Detector over Video Stream - A Privacy Preserving Approach -- Efficacy of Model Fine-Tuning for Personalized Dynamic Gesture Recognition -- Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for Activity Recognition in Smart Homes -- Towards User Friendly Medication Mapping Using Entity-Boosted Two-Tower Neural Network. |
Record Nr. | UNISA-996464505103316 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|