Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
| Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (XII, 149 p. 70 illus., 40 illus. in color.) |
| Disciplina | 005.1 |
| Collana | Theoretical Computer Science and General Issues |
| Soggetto topico |
Software engineering
Operating systems (Computers) Computer systems Computers, Special purpose Artificial intelligence Software Engineering Operating Systems Computer System Implementation Special Purpose and Application-Based Systems Artificial Intelligence |
| ISBN | 3-030-29611-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | System Support for Neural Network -- Scheduling and File Systems -- Optimization and Parallelization -- Security and Algorithms. |
| Record Nr. | UNISA-996466429803316 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced Parallel Processing Technologies : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
| Advanced Parallel Processing Technologies : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (XII, 149 p. 70 illus., 40 illus. in color.) |
| Disciplina | 005.1 |
| Collana | Theoretical Computer Science and General Issues |
| Soggetto topico |
Software engineering
Operating systems (Computers) Computer systems Computers, Special purpose Artificial intelligence Software Engineering Operating Systems Computer System Implementation Special Purpose and Application-Based Systems Artificial Intelligence |
| ISBN | 3-030-29611-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | System Support for Neural Network -- Scheduling and File Systems -- Optimization and Parallelization -- Security and Algorithms. |
| Record Nr. | UNINA-9910349306603321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Estimation and control of large-scale networked systems / / Tong Zhou, Keyou You, Tao Li
| Estimation and control of large-scale networked systems / / Tong Zhou, Keyou You, Tao Li |
| Autore | Zhou Tong |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Oxford : , : Butterworth-Heinemann, , 2018 |
| Descrizione fisica | 1 online resource (498 pages) |
| Disciplina | 629.8 |
| Soggetto topico |
Automatic control
Large scale systems |
| ISBN |
0-12-809221-1
0-12-805311-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583071703321 |
Zhou Tong
|
||
| Oxford : , : Butterworth-Heinemann, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
| Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2012 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina | 780.285/6312 |
| Altri autori (Persone) |
LiTao
OgiharaMitsunori <1963-> TzanetakisGeorge <1975-> |
| Collana | Chapman & Hall/CRC data mining and knowledge discovery series |
| Soggetto topico |
Musical analysis - Data processing
Data mining Information storage and retrieval systems |
| Soggetto genere / forma | Electronic books. |
| ISBN |
0-429-10572-X
1-283-31161-5 9786613311610 1-4398-3555-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
11. Symbolic Data Mining in Musicology |
| Record Nr. | UNINA-9910461416403321 |
| Boca Raton, Fla. : , : CRC Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
| Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2012 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina | 780.285/6312 |
| Altri autori (Persone) |
LiTao
OgiharaMitsunori <1963-> TzanetakisGeorge <1975-> |
| Collana | Chapman & Hall/CRC data mining and knowledge discovery series |
| Soggetto topico |
Musical analysis - Data processing
Data mining Information storage and retrieval systems |
| ISBN |
0-429-10572-X
1-283-31161-5 9786613311610 1-4398-3555-1 |
| Classificazione | 9,2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
11. Symbolic Data Mining in Musicology |
| Record Nr. | UNINA-9910789714603321 |
| Boca Raton, Fla. : , : CRC Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanogap electrodes / / edited by Tao Li
| Nanogap electrodes / / edited by Tao Li |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (435 pages) |
| Disciplina | 621.3815 |
| Soggetto topico |
Nanoelectronics
Electrodes |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-527-65958-7
3-527-65959-5 3-527-65956-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond‐CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular‐Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References -- Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many‐Body Interactions -- 2.4.1 Electron‐Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong‐Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport -- 2.6 First‐Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template -- 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On‐Wire Lithography -- 3.6.4 Nanowire Mask.
3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe‐Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe‐Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene -- 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS -- 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS -- 4.2.6 STM Imaging by IETS -- 4.3 Optical and Optoelectronic Spectroscopy -- 4.4 Concluding Remarks -- References -- Chapter 5 Single‐Molecule Electronic Devices -- 5.1 Introduction -- 5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods -- 5.2.1 Anchor Groups -- 5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance -- 5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts -- 5.3 Electrical Rectifier -- 5.3.1 Rectification Toward Diodes -- 5.3.2 General Mechanisms for Molecular Rectification -- 5.3.2.1 Aviram-Ratner Model -- 5.3.2.2 Kornilovitch-Bratkovsky-Williams Model -- 5.3.2.3 Datta-Paulsson Model -- 5.3.3 Rectification Originated from Molecules -- 5.3.3.1 D-σ-A and D-π-A Systems -- 5.3.3.2 D-A Diblock Molecular System. 5.3.4 Rectification Stemming from Different Interfacial Coupling -- 5.3.4.1 Different Electrodes -- 5.3.4.2 Anchoring Groups -- 5.3.4.3 Contact Geometry -- 5.3.4.4 Interfacial Distance -- 5.3.5 Additional Molecular Rectifiers -- 5.4 Conductance Switches -- 5.4.1 Voltage Pulse Induced Switches -- 5.4.2 Light‐Induced Switching -- 5.4.3 Switching Triggered by Chemical Process (Redox and pH) -- 5.4.4 Spintronics‐Based Switch -- 5.5 Gating the Transport: Transistor‐Like Single‐Molecule Devices -- 5.5.1 Electrostatic Gate Control -- 5.5.2 Side Gating -- 5.5.3 Electrochemical Gate Control -- 5.5.4 Molecular Quantum Dots -- 5.6 Challenges and Outlooks -- References -- Chapter 6 Molecular Electronic Junctions Based on Self‐Assembled Monolayers -- 6.1 Introduction -- 6.2 Molecular Monolayers for Molecular Electronics Devices -- 6.2.1 Monolayers Covalently Bonded to Noble Metals -- 6.2.2 Monolayers Attached to Non‐metal Substrates -- 6.2.3 Langmuir-Blodgett Method -- 6.3 Top Electrodes -- 6.3.1 Deposited Metal -- 6.3.1.1 Direct Evaporation -- 6.3.1.2 Indirect Evaporation -- 6.3.2 Make Top Contact by Soft Methods -- 6.3.2.1 Lift‐and‐Float Approach -- 6.3.2.2 Crosswire Junction -- 6.3.2.3 Transfer Printing -- 6.3.2.4 Graphene as Top Electrode -- 6.3.2.5 Liquid Metal Contact -- 6.4 Experimental Progress with Ensemble Molecular Junctions -- 6.5 Outlook -- References -- Chapter 7 Toward Devices and Applications -- 7.1 Introduction -- 7.2 Major Issues: Reliability and Robustness -- 7.2.1 Single Molecular Device -- 7.2.1.1 Top‐Contact Junctions -- 7.2.1.2 Planar Metallic Nanogap Electrodes -- 7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene -- 7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene -- 7.2.2 Molecular Device Based on Molecule Monolayer -- 7.2.2.1 Bottom Electrodes. 7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes -- 7.2.2.3 Molecule Monolayer Formation -- 7.2.2.4 Top Electrodes -- 7.3 Potential Integration Solutions -- 7.3.1 Carbon Nanotube or Graphene Interconnects -- 7.3.2 Self‐Assembled Monolayers for Integrated Molecular Junctions -- 7.3.3 Cross Bar Architecture -- 7.4 Beyond Simple Charge Transport -- 7.4.1 Mechanics -- 7.4.2 Thermoelectronics -- 7.4.3 Quantum Interference -- 7.4.4 Spintronics -- 7.4.4.1 SAM‐Based Magnetic Tunnel Junctions -- 7.4.4.2 Molecule Based Spin‐Valves or Magnetic Tunnel Junctions -- 7.4.4.3 Single Molecular Spin Transistor -- 7.4.4.4 Single Molecular Nuclear Spin Transistor -- 7.4.4.5 Molecule Based Hybrid Spintronic Devices -- 7.5 Electrochemistry with Nanogap Electrodes -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910555129503321 |
| Weinheim, Germany : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanogap electrodes / / edited by Tao Li
| Nanogap electrodes / / edited by Tao Li |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (435 pages) |
| Disciplina | 621.3815 |
| Soggetto topico |
Nanoelectronics
Electrodes |
| ISBN |
3-527-65958-7
3-527-65959-5 3-527-65956-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond‐CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular‐Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References -- Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many‐Body Interactions -- 2.4.1 Electron‐Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong‐Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport -- 2.6 First‐Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template -- 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On‐Wire Lithography -- 3.6.4 Nanowire Mask.
3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe‐Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe‐Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene -- 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS -- 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS -- 4.2.6 STM Imaging by IETS -- 4.3 Optical and Optoelectronic Spectroscopy -- 4.4 Concluding Remarks -- References -- Chapter 5 Single‐Molecule Electronic Devices -- 5.1 Introduction -- 5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods -- 5.2.1 Anchor Groups -- 5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance -- 5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts -- 5.3 Electrical Rectifier -- 5.3.1 Rectification Toward Diodes -- 5.3.2 General Mechanisms for Molecular Rectification -- 5.3.2.1 Aviram-Ratner Model -- 5.3.2.2 Kornilovitch-Bratkovsky-Williams Model -- 5.3.2.3 Datta-Paulsson Model -- 5.3.3 Rectification Originated from Molecules -- 5.3.3.1 D-σ-A and D-π-A Systems -- 5.3.3.2 D-A Diblock Molecular System. 5.3.4 Rectification Stemming from Different Interfacial Coupling -- 5.3.4.1 Different Electrodes -- 5.3.4.2 Anchoring Groups -- 5.3.4.3 Contact Geometry -- 5.3.4.4 Interfacial Distance -- 5.3.5 Additional Molecular Rectifiers -- 5.4 Conductance Switches -- 5.4.1 Voltage Pulse Induced Switches -- 5.4.2 Light‐Induced Switching -- 5.4.3 Switching Triggered by Chemical Process (Redox and pH) -- 5.4.4 Spintronics‐Based Switch -- 5.5 Gating the Transport: Transistor‐Like Single‐Molecule Devices -- 5.5.1 Electrostatic Gate Control -- 5.5.2 Side Gating -- 5.5.3 Electrochemical Gate Control -- 5.5.4 Molecular Quantum Dots -- 5.6 Challenges and Outlooks -- References -- Chapter 6 Molecular Electronic Junctions Based on Self‐Assembled Monolayers -- 6.1 Introduction -- 6.2 Molecular Monolayers for Molecular Electronics Devices -- 6.2.1 Monolayers Covalently Bonded to Noble Metals -- 6.2.2 Monolayers Attached to Non‐metal Substrates -- 6.2.3 Langmuir-Blodgett Method -- 6.3 Top Electrodes -- 6.3.1 Deposited Metal -- 6.3.1.1 Direct Evaporation -- 6.3.1.2 Indirect Evaporation -- 6.3.2 Make Top Contact by Soft Methods -- 6.3.2.1 Lift‐and‐Float Approach -- 6.3.2.2 Crosswire Junction -- 6.3.2.3 Transfer Printing -- 6.3.2.4 Graphene as Top Electrode -- 6.3.2.5 Liquid Metal Contact -- 6.4 Experimental Progress with Ensemble Molecular Junctions -- 6.5 Outlook -- References -- Chapter 7 Toward Devices and Applications -- 7.1 Introduction -- 7.2 Major Issues: Reliability and Robustness -- 7.2.1 Single Molecular Device -- 7.2.1.1 Top‐Contact Junctions -- 7.2.1.2 Planar Metallic Nanogap Electrodes -- 7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene -- 7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene -- 7.2.2 Molecular Device Based on Molecule Monolayer -- 7.2.2.1 Bottom Electrodes. 7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes -- 7.2.2.3 Molecule Monolayer Formation -- 7.2.2.4 Top Electrodes -- 7.3 Potential Integration Solutions -- 7.3.1 Carbon Nanotube or Graphene Interconnects -- 7.3.2 Self‐Assembled Monolayers for Integrated Molecular Junctions -- 7.3.3 Cross Bar Architecture -- 7.4 Beyond Simple Charge Transport -- 7.4.1 Mechanics -- 7.4.2 Thermoelectronics -- 7.4.3 Quantum Interference -- 7.4.4 Spintronics -- 7.4.4.1 SAM‐Based Magnetic Tunnel Junctions -- 7.4.4.2 Molecule Based Spin‐Valves or Magnetic Tunnel Junctions -- 7.4.4.3 Single Molecular Spin Transistor -- 7.4.4.4 Single Molecular Nuclear Spin Transistor -- 7.4.4.5 Molecule Based Hybrid Spintronic Devices -- 7.5 Electrochemistry with Nanogap Electrodes -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910830665803321 |
| Weinheim, Germany : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
RFID as an infrastructure / / Yan Qiao, Shigang Chen, Tao Li
| RFID as an infrastructure / / Yan Qiao, Shigang Chen, Tao Li |
| Autore | Qiao Yan |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | New York, : Springer, 2013 |
| Descrizione fisica | 1 online resource (89 p.) |
| Disciplina | 621.3 |
| Altri autori (Persone) |
ChenShigang
LiTao |
| Collana | SpringerBriefs in computer science |
| Soggetto topico |
Radio frequency identification systems
Wireless sensor networks |
| ISBN |
1-283-62476-1
9786613937216 1-4614-5230-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Tag Estimation in RFID Systems -- Collecting Information from Sensor-augmented RFID Systems -- Tag-ordering Polling Protocols in RFID Systems. |
| Record Nr. | UNINA-9910437588803321 |
Qiao Yan
|
||
| New York, : Springer, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Subdivision Surface Modeling Technology / / by Wenhe Liao, Hao Liu, Tao Li
| Subdivision Surface Modeling Technology / / by Wenhe Liao, Hao Liu, Tao Li |
| Autore | Liao Wenhe |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (XVI, 307 p. 193 illus.) |
| Disciplina | 003.3 |
| Soggetto topico |
Computer simulation
Geometry Computer-aided engineering Computational intelligence Mathematics Visualization Discrete mathematics Simulation and Modeling Computer-Aided Engineering (CAD, CAE) and Design Computational Intelligence Discrete Mathematics |
| ISBN | 981-10-3515-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Splines and Subdivision -- Meshes and Subdivision -- Analysis of Subdivision Surface -- n-sided Patches and Subdivision Surfaces -- Energy Optimization Method and Subdivision Surfaces -- Interactive Shape Editing for Subdivision Surfaces -- Intersection and trimming of subdivision surfaces -- Subdivision Surfaces and Curve Networks -- Fitting Unstructured Triangle Meshes -- Subdivision Surfaces Based Poisson Mesh Edit. |
| Record Nr. | UNINA-9910254825203321 |
Liao Wenhe
|
||
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Waste Energy Harvesting : Mechanical and Thermal Energies / / by Ling Bing Kong, Tao Li, Huey Hoon Hng, Freddy Boey, Tianshu Zhang, Sean Li
| Waste Energy Harvesting : Mechanical and Thermal Energies / / by Ling Bing Kong, Tao Li, Huey Hoon Hng, Freddy Boey, Tianshu Zhang, Sean Li |
| Autore | Kong Ling Bing |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (603 p.) |
| Disciplina | 333.794 |
| Collana | Lecture Notes in Energy |
| Soggetto topico |
Energy harvesting
Nanotechnology Energy systems Building materials Energy Harvesting Energy Systems Structural Materials |
| ISBN | 3-642-54634-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Waste Mechanical Energy Harvesting (I) - Piezoelectric Effect -- Waste Mechanical Energy Harvesting (II) - Nanopiezoelectric Effect -- Waste Thermal Energy Harvesting (I) - Thermoelectric Effect -- Waste Thermal Energy Harvesting (II) - Pyroelectric Effect and Others -- Waste Thermal Energy Harvesting (III) - Storage with Phase Change Materials. |
| Record Nr. | UNINA-9910299621003321 |
Kong Ling Bing
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||