top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 149 p. 70 illus., 40 illus. in color.)
Disciplina 005.1
Collana Theoretical Computer Science and General Issues
Soggetto topico Software engineering
Operating systems (Computers)
Computer systems
Computers, Special purpose
Artificial intelligence
Software Engineering
Operating Systems
Computer System Implementation
Special Purpose and Application-Based Systems
Artificial Intelligence
ISBN 3-030-29611-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto System Support for Neural Network -- Scheduling and File Systems -- Optimization and Parallelization -- Security and Algorithms.
Record Nr. UNISA-996466429803316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
Advanced Parallel Processing Technologies [[electronic resource] ] : 13th International Symposium, APPT 2019, Tianjin, China, August 15–16, 2019, Proceedings / / edited by Pen-Chung Yew, Per Stenström, Junjie Wu, Xiaoli Gong, Tao Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 149 p. 70 illus., 40 illus. in color.)
Disciplina 005.1
Collana Theoretical Computer Science and General Issues
Soggetto topico Software engineering
Operating systems (Computers)
Computer systems
Computers, Special purpose
Artificial intelligence
Software Engineering
Operating Systems
Computer System Implementation
Special Purpose and Application-Based Systems
Artificial Intelligence
ISBN 3-030-29611-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto System Support for Neural Network -- Scheduling and File Systems -- Optimization and Parallelization -- Security and Algorithms.
Record Nr. UNINA-9910349306603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Estimation and control of large-scale networked systems / / Tong Zhou, Keyou You, Tao Li
Estimation and control of large-scale networked systems / / Tong Zhou, Keyou You, Tao Li
Autore Zhou Tong
Edizione [First edition.]
Pubbl/distr/stampa Oxford : , : Butterworth-Heinemann, , 2018
Descrizione fisica 1 online resource (498 pages)
Disciplina 629.8
Soggetto topico Automatic control
Large scale systems
ISBN 0-12-809221-1
0-12-805311-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583071703321
Zhou Tong  
Oxford : , : Butterworth-Heinemann, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (372 p.)
Disciplina 780.285/6312
Altri autori (Persone) LiTao
OgiharaMitsunori <1963->
TzanetakisGeorge <1975->
Collana Chapman & Hall/CRC data mining and knowledge discovery series
Soggetto topico Musical analysis - Data processing
Data mining
Information storage and retrieval systems
Soggetto genere / forma Electronic books.
ISBN 0-429-10572-X
1-283-31161-5
9786613311610
1-4398-3555-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
11. Symbolic Data Mining in Musicology
Record Nr. UNINA-9910461416403321
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (372 p.)
Disciplina 780.285/6312
Altri autori (Persone) LiTao
OgiharaMitsunori <1963->
TzanetakisGeorge <1975->
Collana Chapman & Hall/CRC data mining and knowledge discovery series
Soggetto topico Musical analysis - Data processing
Data mining
Information storage and retrieval systems
ISBN 0-429-10572-X
1-283-31161-5
9786613311610
1-4398-3555-1
Classificazione 9,2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
11. Symbolic Data Mining in Musicology
Record Nr. UNINA-9910789714603321
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Music data mining / / edited by Tao Li, Mitsunori Ogihara, George Tzanetakis
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (372 p.)
Disciplina 780.285/6312
Altri autori (Persone) LiTao
OgiharaMitsunori <1963->
TzanetakisGeorge <1975->
Collana Chapman & Hall/CRC data mining and knowledge discovery series
Soggetto topico Musical analysis - Data processing
Data mining
Information storage and retrieval systems
ISBN 0-429-10572-X
1-283-31161-5
9786613311610
1-4398-3555-1
Classificazione 9,2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
11. Symbolic Data Mining in Musicology
Record Nr. UNINA-9910808142303321
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanogap electrodes / / edited by Tao Li
Nanogap electrodes / / edited by Tao Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley, , [2021]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3815
Soggetto topico Nanoelectronics
Electrodes
Soggetto genere / forma Electronic books.
ISBN 3-527-65958-7
3-527-65959-5
3-527-65956-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond‐CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular‐Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References -- Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many‐Body Interactions -- 2.4.1 Electron‐Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong‐Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport -- 2.6 First‐Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template -- 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On‐Wire Lithography -- 3.6.4 Nanowire Mask.
3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe‐Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe‐Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene -- 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS -- 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS -- 4.2.6 STM Imaging by IETS -- 4.3 Optical and Optoelectronic Spectroscopy -- 4.4 Concluding Remarks -- References -- Chapter 5 Single‐Molecule Electronic Devices -- 5.1 Introduction -- 5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods -- 5.2.1 Anchor Groups -- 5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance -- 5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts -- 5.3 Electrical Rectifier -- 5.3.1 Rectification Toward Diodes -- 5.3.2 General Mechanisms for Molecular Rectification -- 5.3.2.1 Aviram-Ratner Model -- 5.3.2.2 Kornilovitch-Bratkovsky-Williams Model -- 5.3.2.3 Datta-Paulsson Model -- 5.3.3 Rectification Originated from Molecules -- 5.3.3.1 D-σ-A and D-π-A Systems -- 5.3.3.2 D-A Diblock Molecular System.
5.3.4 Rectification Stemming from Different Interfacial Coupling -- 5.3.4.1 Different Electrodes -- 5.3.4.2 Anchoring Groups -- 5.3.4.3 Contact Geometry -- 5.3.4.4 Interfacial Distance -- 5.3.5 Additional Molecular Rectifiers -- 5.4 Conductance Switches -- 5.4.1 Voltage Pulse Induced Switches -- 5.4.2 Light‐Induced Switching -- 5.4.3 Switching Triggered by Chemical Process (Redox and pH) -- 5.4.4 Spintronics‐Based Switch -- 5.5 Gating the Transport: Transistor‐Like Single‐Molecule Devices -- 5.5.1 Electrostatic Gate Control -- 5.5.2 Side Gating -- 5.5.3 Electrochemical Gate Control -- 5.5.4 Molecular Quantum Dots -- 5.6 Challenges and Outlooks -- References -- Chapter 6 Molecular Electronic Junctions Based on Self‐Assembled Monolayers -- 6.1 Introduction -- 6.2 Molecular Monolayers for Molecular Electronics Devices -- 6.2.1 Monolayers Covalently Bonded to Noble Metals -- 6.2.2 Monolayers Attached to Non‐metal Substrates -- 6.2.3 Langmuir-Blodgett Method -- 6.3 Top Electrodes -- 6.3.1 Deposited Metal -- 6.3.1.1 Direct Evaporation -- 6.3.1.2 Indirect Evaporation -- 6.3.2 Make Top Contact by Soft Methods -- 6.3.2.1 Lift‐and‐Float Approach -- 6.3.2.2 Crosswire Junction -- 6.3.2.3 Transfer Printing -- 6.3.2.4 Graphene as Top Electrode -- 6.3.2.5 Liquid Metal Contact -- 6.4 Experimental Progress with Ensemble Molecular Junctions -- 6.5 Outlook -- References -- Chapter 7 Toward Devices and Applications -- 7.1 Introduction -- 7.2 Major Issues: Reliability and Robustness -- 7.2.1 Single Molecular Device -- 7.2.1.1 Top‐Contact Junctions -- 7.2.1.2 Planar Metallic Nanogap Electrodes -- 7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene -- 7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene -- 7.2.2 Molecular Device Based on Molecule Monolayer -- 7.2.2.1 Bottom Electrodes.
7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes -- 7.2.2.3 Molecule Monolayer Formation -- 7.2.2.4 Top Electrodes -- 7.3 Potential Integration Solutions -- 7.3.1 Carbon Nanotube or Graphene Interconnects -- 7.3.2 Self‐Assembled Monolayers for Integrated Molecular Junctions -- 7.3.3 Cross Bar Architecture -- 7.4 Beyond Simple Charge Transport -- 7.4.1 Mechanics -- 7.4.2 Thermoelectronics -- 7.4.3 Quantum Interference -- 7.4.4 Spintronics -- 7.4.4.1 SAM‐Based Magnetic Tunnel Junctions -- 7.4.4.2 Molecule Based Spin‐Valves or Magnetic Tunnel Junctions -- 7.4.4.3 Single Molecular Spin Transistor -- 7.4.4.4 Single Molecular Nuclear Spin Transistor -- 7.4.4.5 Molecule Based Hybrid Spintronic Devices -- 7.5 Electrochemistry with Nanogap Electrodes -- References -- Index -- EULA.
Record Nr. UNINA-9910555129503321
Weinheim, Germany : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanogap electrodes / / edited by Tao Li
Nanogap electrodes / / edited by Tao Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley, , [2021]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3815
Soggetto topico Nanoelectronics
Electrodes
ISBN 3-527-65958-7
3-527-65959-5
3-527-65956-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond‐CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular‐Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References -- Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many‐Body Interactions -- 2.4.1 Electron‐Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong‐Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport -- 2.6 First‐Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template -- 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On‐Wire Lithography -- 3.6.4 Nanowire Mask.
3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe‐Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe‐Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene -- 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS -- 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS -- 4.2.6 STM Imaging by IETS -- 4.3 Optical and Optoelectronic Spectroscopy -- 4.4 Concluding Remarks -- References -- Chapter 5 Single‐Molecule Electronic Devices -- 5.1 Introduction -- 5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods -- 5.2.1 Anchor Groups -- 5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance -- 5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts -- 5.3 Electrical Rectifier -- 5.3.1 Rectification Toward Diodes -- 5.3.2 General Mechanisms for Molecular Rectification -- 5.3.2.1 Aviram-Ratner Model -- 5.3.2.2 Kornilovitch-Bratkovsky-Williams Model -- 5.3.2.3 Datta-Paulsson Model -- 5.3.3 Rectification Originated from Molecules -- 5.3.3.1 D-σ-A and D-π-A Systems -- 5.3.3.2 D-A Diblock Molecular System.
5.3.4 Rectification Stemming from Different Interfacial Coupling -- 5.3.4.1 Different Electrodes -- 5.3.4.2 Anchoring Groups -- 5.3.4.3 Contact Geometry -- 5.3.4.4 Interfacial Distance -- 5.3.5 Additional Molecular Rectifiers -- 5.4 Conductance Switches -- 5.4.1 Voltage Pulse Induced Switches -- 5.4.2 Light‐Induced Switching -- 5.4.3 Switching Triggered by Chemical Process (Redox and pH) -- 5.4.4 Spintronics‐Based Switch -- 5.5 Gating the Transport: Transistor‐Like Single‐Molecule Devices -- 5.5.1 Electrostatic Gate Control -- 5.5.2 Side Gating -- 5.5.3 Electrochemical Gate Control -- 5.5.4 Molecular Quantum Dots -- 5.6 Challenges and Outlooks -- References -- Chapter 6 Molecular Electronic Junctions Based on Self‐Assembled Monolayers -- 6.1 Introduction -- 6.2 Molecular Monolayers for Molecular Electronics Devices -- 6.2.1 Monolayers Covalently Bonded to Noble Metals -- 6.2.2 Monolayers Attached to Non‐metal Substrates -- 6.2.3 Langmuir-Blodgett Method -- 6.3 Top Electrodes -- 6.3.1 Deposited Metal -- 6.3.1.1 Direct Evaporation -- 6.3.1.2 Indirect Evaporation -- 6.3.2 Make Top Contact by Soft Methods -- 6.3.2.1 Lift‐and‐Float Approach -- 6.3.2.2 Crosswire Junction -- 6.3.2.3 Transfer Printing -- 6.3.2.4 Graphene as Top Electrode -- 6.3.2.5 Liquid Metal Contact -- 6.4 Experimental Progress with Ensemble Molecular Junctions -- 6.5 Outlook -- References -- Chapter 7 Toward Devices and Applications -- 7.1 Introduction -- 7.2 Major Issues: Reliability and Robustness -- 7.2.1 Single Molecular Device -- 7.2.1.1 Top‐Contact Junctions -- 7.2.1.2 Planar Metallic Nanogap Electrodes -- 7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene -- 7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene -- 7.2.2 Molecular Device Based on Molecule Monolayer -- 7.2.2.1 Bottom Electrodes.
7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes -- 7.2.2.3 Molecule Monolayer Formation -- 7.2.2.4 Top Electrodes -- 7.3 Potential Integration Solutions -- 7.3.1 Carbon Nanotube or Graphene Interconnects -- 7.3.2 Self‐Assembled Monolayers for Integrated Molecular Junctions -- 7.3.3 Cross Bar Architecture -- 7.4 Beyond Simple Charge Transport -- 7.4.1 Mechanics -- 7.4.2 Thermoelectronics -- 7.4.3 Quantum Interference -- 7.4.4 Spintronics -- 7.4.4.1 SAM‐Based Magnetic Tunnel Junctions -- 7.4.4.2 Molecule Based Spin‐Valves or Magnetic Tunnel Junctions -- 7.4.4.3 Single Molecular Spin Transistor -- 7.4.4.4 Single Molecular Nuclear Spin Transistor -- 7.4.4.5 Molecule Based Hybrid Spintronic Devices -- 7.5 Electrochemistry with Nanogap Electrodes -- References -- Index -- EULA.
Record Nr. UNINA-9910830665803321
Weinheim, Germany : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RFID as an Infrastructure [[electronic resource] /] / by Yan Qiao, Shigang Chen, Tao Li
RFID as an Infrastructure [[electronic resource] /] / by Yan Qiao, Shigang Chen, Tao Li
Autore Qiao Yan
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (89 p.)
Disciplina 621.3
Collana SpringerBriefs in Computer Science
Soggetto topico Microwaves
Optical engineering
Electrical engineering
Application software
Microwaves, RF and Optical Engineering
Communications Engineering, Networks
Information Systems Applications (incl. Internet)
ISBN 1-283-62476-1
9786613937216
1-4614-5230-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Tag Estimation in RFID Systems -- Collecting Information from Sensor-augmented RFID Systems -- Tag-ordering Polling Protocols in RFID Systems.
Record Nr. UNINA-9910437588803321
Qiao Yan  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Subdivision Surface Modeling Technology [[electronic resource] /] / by Wenhe Liao, Hao Liu, Tao Li
Subdivision Surface Modeling Technology [[electronic resource] /] / by Wenhe Liao, Hao Liu, Tao Li
Autore Liao Wenhe
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XVI, 307 p. 193 illus.)
Disciplina 003.3
Soggetto topico Computer simulation
Geometry
Computer-aided engineering
Computational intelligence
Mathematics
Visualization
Discrete mathematics
Simulation and Modeling
Computer-Aided Engineering (CAD, CAE) and Design
Computational Intelligence
Discrete Mathematics
ISBN 981-10-3515-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Splines and Subdivision -- Meshes and Subdivision -- Analysis of Subdivision Surface -- n-sided Patches and Subdivision Surfaces -- Energy Optimization Method and Subdivision Surfaces -- Interactive Shape Editing for Subdivision Surfaces -- Intersection and trimming of subdivision surfaces -- Subdivision Surfaces and Curve Networks -- Fitting Unstructured Triangle Meshes -- Subdivision Surfaces Based Poisson Mesh Edit.
Record Nr. UNINA-9910254825203321
Liao Wenhe  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui