top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings / / edited by Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings / / edited by Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens
Autore Mann Ritse M
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (405 pages)
Disciplina 006.3
Altri autori (Persone) ZhangTianyu
TanTao
HanLuyi
TruhnDanial
LiShuo
GaoYuan
DoyleShannon
Martí MarlyRobert
KatherJakob Nikolas
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031777899
3031777891
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis -- HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging -- DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-Modal Organ and Lesion Segmentation -- One for All: UNET Training on Single-Sequence Masks for Multi-Sequence Breast MRI Segmentation -- Multimodal Breast MRI Language-Image Pretraining (MLIP): An Exploration of a Breast MRI Foundation Model -- Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data -- Efficient Generation of Synthetic Breast CT Slices By Combining Generative and Super-Resolution Models -- Exploring Patient Data Requirements in Training Effective AI Models for MRI-based Breast Cancer Classification -- Virtual dynamic contrast enhanced breast MRI using 2D U-Net -- Optimizing BI-RADS 4 Lesion Assessment using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography -- Mammographic Breast Positioning Assessment via Deep Learning -- Endpoint Detection in Breast Images for Automatic Classification of Breast Cancer Aesthetic Results -- Thick Slices for Optimal Digital Breast Tomosynthesis Classification with Deep-Learning -- Predicting Aesthetic Outcomes in Breast Cancer Surgery: a Multimodal Retrieval Approach -- Vision Mamba for Classification of Breast Ultrasound Images -- Breast Cancer Molecular Subtyping from H&E Whole Slide Images using Foundation Models and Transformers -- Graph Neural Networks for modelling breast biomechanical compression -- A generative adversarial approach to remove Moiré artifacts in Dark-field and Phase-contrast x-ray images -- MRI Breast tissue segmentation using nnUNet for Biomechanical modeling -- Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation -- Guiding Breast Conservative Surgery by Augmented Reality from Preoperative MRI: Initial System Design and Retrospective Trials -- ELK: Enhanced Learning through cross-modal Knowledge transfer for lesion detection in limited-sample contrast-enhanced mammography datasets -- Safe Breast Cancer Diagnosis Resilient to Mammographic Adversarial Samples.
Record Nr. UNINA-9910983086703321
Mann Ritse M  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings / / edited by Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings / / edited by Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens
Autore Mann Ritse M
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (405 pages)
Disciplina 006.3
Altri autori (Persone) ZhangTianyu
TanTao
HanLuyi
TruhnDanial
LiShuo
GaoYuan
DoyleShannon
Martí MarlyRobert
KatherJakob Nikolas
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031777899
3031777891
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis -- HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging -- DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-Modal Organ and Lesion Segmentation -- One for All: UNET Training on Single-Sequence Masks for Multi-Sequence Breast MRI Segmentation -- Multimodal Breast MRI Language-Image Pretraining (MLIP): An Exploration of a Breast MRI Foundation Model -- Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data -- Efficient Generation of Synthetic Breast CT Slices By Combining Generative and Super-Resolution Models -- Exploring Patient Data Requirements in Training Effective AI Models for MRI-based Breast Cancer Classification -- Virtual dynamic contrast enhanced breast MRI using 2D U-Net -- Optimizing BI-RADS 4 Lesion Assessment using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography -- Mammographic Breast Positioning Assessment via Deep Learning -- Endpoint Detection in Breast Images for Automatic Classification of Breast Cancer Aesthetic Results -- Thick Slices for Optimal Digital Breast Tomosynthesis Classification with Deep-Learning -- Predicting Aesthetic Outcomes in Breast Cancer Surgery: a Multimodal Retrieval Approach -- Vision Mamba for Classification of Breast Ultrasound Images -- Breast Cancer Molecular Subtyping from H&E Whole Slide Images using Foundation Models and Transformers -- Graph Neural Networks for modelling breast biomechanical compression -- A generative adversarial approach to remove Moiré artifacts in Dark-field and Phase-contrast x-ray images -- MRI Breast tissue segmentation using nnUNet for Biomechanical modeling -- Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation -- Guiding Breast Conservative Surgery by Augmented Reality from Preoperative MRI: Initial System Design and Retrospective Trials -- ELK: Enhanced Learning through cross-modal Knowledge transfer for lesion detection in limited-sample contrast-enhanced mammography datasets -- Safe Breast Cancer Diagnosis Resilient to Mammographic Adversarial Samples.
Record Nr. UNISA-996647864103316
Mann Ritse M  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bio-imaging and visualization for patient-customized simulations / / Joao Manuel R.S. Tavares, Xiongbiao Luo, Shuo Li, editors
Bio-imaging and visualization for patient-customized simulations / / Joao Manuel R.S. Tavares, Xiongbiao Luo, Shuo Li, editors
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham [Switzerland] : , : Springer, , 2014
Descrizione fisica 1 online resource (xiv, 137 pages) : illustrations (some color)
Disciplina 621.367
Collana Lecture Notes in Computational Vision and Biomechanics
Soggetto topico Imaging systems in medicine
Computational biology
ISBN 3-319-03590-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Workshop Organizers -- Workshop Program Committee -- Acknowledgements -- Novel Colon Wall Flattening Model for Computed Tomographic Colonography: Method and Validation, by Huafeng Wang, Lihong Li, Hao Han, Yunhong Wang, Weifeng Lv, Xianfeng Gu, Zhengrong Liang -- Biomechanical Simulation of Lung Deformation from One CT Scan, by Feng Li, Fatih Porikli -- 2D-3D Registration: A Step towards Image-Guided Ankle Fusion, by Ahmed Shalaby, Aly Farag, Eslam Mostafa, Todd Hockenbury -- A Graph Based Methodology for Volumetric Left Ventricle Segmentation, by S. P. Dakua, J. Abi Nahed, A. Al-Ansari -- Minimally Interactive MRI Segmentation for Subject-Specific Modelling of the Tongue, by Negar M. Harandi, Rafeef Abugharbieh, Sidney Fels -- Real-time and Accurate Endoscope Electromagnetic Tracking via Marker-free Registration Based on Endoscope Tip Center, by Xiongbiao Luo, Kensaku Mori -- Evaluation of Image Guided Robot Assisted Surgical Training for Patient Specific Laparoscopic Surgery, by Tao Yang, Kyaw Kyar Toe, Chin Boon Chng, Chee Kong Chui, Jiang Liu, Stephan K.Y. Chang -- Proxemics Measurement during Social Anxiety Disorder Therapy using a RGBD Sensors Network, by Julien Leroy, François Rocca, Bernard Gosselin -- How Do Sex, Age and Osteoarthritis Affect Cartilage Thickness at the Thumb Carpometacarpal Joint? Insights from Subject-Specific Cartilage Modeling, by Eni Halilaj, David H Laidlaw, Douglas C Moore, Joseph J Crisco -- Patient Specific Modeling of Pectus Excavatum for the Nuss Procedure Simulation, by Krzysztof J. Rechowicz, Mohammad F. Obeid, Frederic D. McKenzie -- Formulating a Pedicle Screw Fastening Strength Surrogate via Patient-Specific Virtual Templating and Planning, by Cristian A. Linte, Jon J. Camp, Kurt Augustine, Paul M. Huddleston, Anthony A. Stans, David R. Holmes III, Richard A. Robb.
Record Nr. UNINA-9910299495503321
Cham [Switzerland] : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Computers
Education—Data processing
Application software
Image Processing and Computer Vision
Machine Learning
Information Systems and Communication Service
Computers and Education
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-39752-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature.
Record Nr. UNISA-996418205603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Machine learning
Computer networks
Education - Data processing
Social sciences - Data processing
Computer Vision
Machine Learning
Computer Communication Networks
Computers and Education
Computer Application in Social and Behavioral Sciences
ISBN 3-030-39752-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature.
Record Nr. UNINA-9910373927703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 181 p. 103 illus., 77 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Computer communication systems
Artificial intelligence
Computer hardware
Image Processing and Computer Vision
Health Informatics
Computer Communication Networks
Artificial Intelligence
Computer Hardware
ISBN 3-030-13736-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach.
Record Nr. UNISA-996466445103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 181 p. 103 illus., 77 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Medical informatics
Computer networks
Artificial intelligence
Computers
Computer Vision
Health Informatics
Computer Communication Networks
Artificial Intelligence
Computer Hardware
ISBN 3-030-13736-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach.
Record Nr. UNINA-9910337578003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings / / edited by Tomaž Vrtovec, Jianhua Yao, Ben Glocker, Tobias Klinder, Alejandro Frangi, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings / / edited by Tomaž Vrtovec, Jianhua Yao, Ben Glocker, Tobias Klinder, Alejandro Frangi, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 159 p. 61 illus.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Pattern recognition
Computer graphics
Artificial intelligence
Computer simulation
Algorithms
Image Processing and Computer Vision
Pattern Recognition
Computer Graphics
Artificial Intelligence
Simulation and Modeling
Algorithm Analysis and Problem Complexity
ISBN 3-319-41827-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Automated Pedicle Screw Size and Trajectory Planning by Maximization of Fastening Strength -- Automatic Modic Changes Classification in Spinal MRI -- Patient Registration via Topologically Encoded Depth Projection Images in Spine Surgery -- Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting -- Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering -- Cortical Bone Thickness Estimation in CT Images: A Model-Based Approach Without Profile Fitting -- Multi-Atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT -- Statistical Shape Model Construction of Lumbar Vertebrae and Intervertebral Discs in Segmentation for Discectomy Surgery Simulation -- Automatic Intervertebral Discs Localization and Segmentation: A Vertebral Approach -- Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-Atlas Based Registration -- Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor -- 3D Intervertebral Disc Segmentation from MRI Using Supervoxel-Based CRFs -- Automatic Intervertebral Disc Localization and Segmentation in 3D MR Images Based on Regression Forests and Active Contours -- Localization and Segmentation of 3D Intervertebral Discs from MR Images via a Learning Based Method: A Validation Framework -- Automated Intervertebral Disc Segmentation Using Probabilistic Shape Estimation and Active Shape Models. .
Record Nr. UNISA-996465678203316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 4th International Workshop and Challenge, CSI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Jianhua Yao, Tomaž Vrtovec, Guoyan Zheng, Alejandro Frangi, Ben Glocker, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 4th International Workshop and Challenge, CSI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Jianhua Yao, Tomaž Vrtovec, Guoyan Zheng, Alejandro Frangi, Ben Glocker, Shuo Li
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 147 p. 60 illus.)
Disciplina 006.37
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Pattern recognition
Computer graphics
Artificial intelligence
Computer simulation
Algorithms
Image Processing and Computer Vision
Pattern Recognition
Computer Graphics
Artificial Intelligence
Simulation and Modeling
Algorithm Analysis and Problem Complexity
ISBN 3-319-55050-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto State-of-the-art techniques -- Novel and emerging analysis and visualization techniques -- Clinical challenges and open problems -- Major aspects of problems related to spine imaging -- Including clinical applications of spine imaging -- Computer aided diagnosis of spine conditions -- Computer aided detection of spine-related diseases -- Emerging computational imaging techniques for spinal diseases,.-Fast 3D reconstruction of spine, feature extraction, multiscale analysis, pattern recognition, image enhancement of spine imaging -- Image-guided spine intervention and treatment, multimodal image registration and fusion for spine imaging -- Novel visualization techniques, segmentation techniques for spine imaging, statistical and geometric modeling for spine and vertebra, spine and vertebra localization.
Record Nr. UNISA-996466086603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging : Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings / / edited by Tomaž Vrtovec, Jianhua Yao, Ben Glocker, Tobias Klinder, Alejandro Frangi, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging : Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings / / edited by Tomaž Vrtovec, Jianhua Yao, Ben Glocker, Tobias Klinder, Alejandro Frangi, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 159 p. 61 illus.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Pattern recognition systems
Computer graphics
Artificial intelligence
Computer simulation
Algorithms
Computer Vision
Automated Pattern Recognition
Computer Graphics
Artificial Intelligence
Computer Modelling
ISBN 3-319-41827-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Automated Pedicle Screw Size and Trajectory Planning by Maximization of Fastening Strength -- Automatic Modic Changes Classification in Spinal MRI -- Patient Registration via Topologically Encoded Depth Projection Images in Spine Surgery -- Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting -- Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering -- Cortical Bone Thickness Estimation in CT Images: A Model-Based Approach Without Profile Fitting -- Multi-Atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT -- Statistical Shape Model Construction of Lumbar Vertebrae and Intervertebral Discs in Segmentation for Discectomy Surgery Simulation -- Automatic Intervertebral Discs Localization and Segmentation: A Vertebral Approach -- Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-Atlas Based Registration -- Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor -- 3D Intervertebral Disc Segmentation from MRI Using Supervoxel-Based CRFs -- Automatic Intervertebral Disc Localization and Segmentation in 3D MR Images Based on Regression Forests and Active Contours -- Localization and Segmentation of 3D Intervertebral Discs from MR Images via a Learning Based Method: A Validation Framework -- Automated Intervertebral Disc Segmentation Using Probabilistic Shape Estimation and Active Shape Models. .
Record Nr. UNINA-9910484764303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...