top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Materials for Multidisciplinary Applications / / edited by Marinda Wu, Wei Gao, Lei Li, Yingchun Lu, Jingbo Louise Liu
Advanced Materials for Multidisciplinary Applications / / edited by Marinda Wu, Wei Gao, Lei Li, Yingchun Lu, Jingbo Louise Liu
Autore Wu Marinda
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (386 pages)
Disciplina 620.11
Altri autori (Persone) GaoWei
LiLei
LuYingchun
LiuJingbo Louise
Soggetto topico Materials
Catalysis
Force and energy
Biomaterials
Nanotechnology
Renewable energy sources
Chemistry
Materials for Energy and Catalysis
Renewable Energy
Materials Chemistry
Materials for Devices
ISBN 3-031-39404-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Leadership and Resiliency in the Global Chemistry Enterprise -- Chinese American Chemical Society (CACS): Overview and 40th Anniversary -- Universal vaccine development through glycoengineering -- Advances in Lipid Nanoparticles for mRNA Delivery: from Concept to Clinical Intervention -- Biodegradable Nanoparticles for Drug Delivery -- 6-Azaindole Derivative GNF2133 as DYRK1A Inhibitor for the Treatment of Type 1 Diabetes -- Super resolution study of neurotransmission in real time with scanning electrochemical microcopy and nanoelectrodes -- Novel acrylic emulsion polymers with high bio-carbon content for personal care applications -- A Comparative Study between Gel Permeation Chromatography and Asymmetric Flow Field Flow Fractionation for Characterization of Gelatin -- Metal Derivative Reaction Engineering: A Gateway to Novel Energy Conversion Techology -- Nanohybrids: perform better and be multifunctional -- Advances in CO2 Capture and Utilization for Carbon Neutrality -- Interdisciplinary and International Cooperation to Enhance Chemical Materials for Solar Energy Conversion -- Chemical and fuel commodities through catalytic solvolysis of lignin -- New Alkali Metal Chemistry for Energy and Environments -- A Laser Photolysis Approach to Generate Hierarchically Porous MOFs -- Fabrication of Colloidal Photonic Crystal-Based Materials for Sensing and Coating Applications -- Crosslinking Chemistry for Solution Processable Multilayer Organic Light-Emitting Diodes -- Sustainability and the Chemistry Enterprise -- Design and Application of Functional Materials used in Energy Storage and Conversion -- CACS – Its Long History and Contributions to the Chemical Community.
Record Nr. UNINA-9910765482503321
Wu Marinda  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Left Atrial and Scar Quantification and Segmentation [[electronic resource] ] : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu
Left Atrial and Scar Quantification and Segmentation [[electronic resource] ] : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu
Autore Zhuang Xiahai
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (174 pages)
Disciplina 006
Altri autori (Persone) LiLei
WangSihan
WuFuping
Collana Lecture Notes in Computer Science
Soggetto topico Image processing—Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-31778-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LASSNet: A four steps deep neural network for Left Atrial Segmentation and Scar Quantification -- Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network -- Self Pre-training with Single-scale Adapter for Left Atrial Segmentation -- UGformer for Robust Left Atrium and Scar Segmentation Across Scanners -- Automatically Segmenting the Left Atrium and Scars from LGE-MRIs Using a boundary-focused nnU-Net -- Two Stage of Histogram Matching Augmentation for Domain Generalization : Application to Left Atrial Segmentation -- Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-based Processing -- LA-HRNet: High-resolution network for automatic left atrial segmentation in multi-center LEG MRI -- Edge-enhanced Features Guided Joint Segmentation and Quantification of Left Atrium and Scars in LGE MRI Images -- TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium -- Deep U-Net architecture with curriculum learning for left atrial segmentation -- Cross-domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion -- Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation -- Automated segmentation of the left atrium and scar using deep convolutional neural networks -- Automatic Semi-Supervised Left Atrial Segmentation using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge.
Record Nr. UNISA-996534467303316
Zhuang Xiahai  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Left Atrial and Scar Quantification and Segmentation : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu
Left Atrial and Scar Quantification and Segmentation : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu
Autore Zhuang Xiahai
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (174 pages)
Disciplina 006
616.120754
Altri autori (Persone) LiLei
WangSihan
WuFuping
Collana Lecture Notes in Computer Science
Soggetto topico Image processing—Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-31778-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LASSNet: A four steps deep neural network for Left Atrial Segmentation and Scar Quantification -- Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network -- Self Pre-training with Single-scale Adapter for Left Atrial Segmentation -- UGformer for Robust Left Atrium and Scar Segmentation Across Scanners -- Automatically Segmenting the Left Atrium and Scars from LGE-MRIs Using a boundary-focused nnU-Net -- Two Stage of Histogram Matching Augmentation for Domain Generalization : Application to Left Atrial Segmentation -- Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-based Processing -- LA-HRNet: High-resolution network for automatic left atrial segmentation in multi-center LEG MRI -- Edge-enhanced Features Guided Joint Segmentation and Quantification of Left Atrium and Scars in LGE MRI Images -- TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium -- Deep U-Net architecture with curriculum learning for left atrial segmentation -- Cross-domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion -- Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation -- Automated segmentation of the left atrium and scar using deep convolutional neural networks -- Automatic Semi-Supervised Left Atrial Segmentation using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge.
Record Nr. UNINA-9910720070703321
Zhuang Xiahai  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Myocardial pathology segmentation combining multi-sequence cardiac magnetic resonance images : first challenge, MyoPS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings / / Xiahai Zhuang, Lei Li (edsitors)
Myocardial pathology segmentation combining multi-sequence cardiac magnetic resonance images : first challenge, MyoPS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings / / Xiahai Zhuang, Lei Li (edsitors)
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (VIII, 177 p. 93 illus., 79 illus. in color.)
Disciplina 616.07540285
Collana Lecture notes in computer science
Soggetto topico Diagnostic imaging - Data processing
ISBN 3-030-65651-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge -- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge -- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance -- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images -- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble -- Exploring ensemble applications for multi-sequence myocardial pathology segmentation -- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling -- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences -- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network -- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module -- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation -- Accurate Myocardial Pathology Segmentation with Residual U-Net -- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation -- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR -- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation -- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.
Record Nr. UNINA-9910447248303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Myocardial pathology segmentation combining multi-sequence cardiac magnetic resonance images : first challenge, MyoPS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings / / Xiahai Zhuang, Lei Li (edsitors)
Myocardial pathology segmentation combining multi-sequence cardiac magnetic resonance images : first challenge, MyoPS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings / / Xiahai Zhuang, Lei Li (edsitors)
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (VIII, 177 p. 93 illus., 79 illus. in color.)
Disciplina 616.07540285
Collana Lecture notes in computer science
Soggetto topico Diagnostic imaging - Data processing
ISBN 3-030-65651-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge -- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge -- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance -- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images -- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble -- Exploring ensemble applications for multi-sequence myocardial pathology segmentation -- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling -- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences -- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network -- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module -- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation -- Accurate Myocardial Pathology Segmentation with Residual U-Net -- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation -- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR -- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation -- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.
Record Nr. UNISA-996418294003316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui