top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial intelligence enabled computational methods for smart grid forecast and dispatch / / Yuanzheng Li [and three others]
Artificial intelligence enabled computational methods for smart grid forecast and dispatch / / Yuanzheng Li [and three others]
Autore Li Yuanzheng
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Descrizione fisica 1 online resource (271 pages)
Disciplina 621.31
Collana Engineering Applications of Computational Methods
Soggetto topico Artificial intelligence
Smart power grids
ISBN 9789819907991
9789819907984
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction for Smart Grid Forecast and Dispatch -- Chapter 2: Review for Smart Grid Forecast -- Chapter 3: Review for Smart Grid Dispatch -- Chapter 4: Deep Learning Based Densely Connected Network for Load Forecast -- Chapter 5: Reinforcement Learning Assisted Deep Learning for Probabilistic Charging Power Forecast of Electric Vehicles -- Chapter 6: Dense Skip Attention based Deep Learning for Day-Ahead Electricity Price Forecast with a Drop-Connected Structure -- Chapter 7: Dirichlet Process Mixture Model Based on Relevant Data for Uncertainty Characterization of Net Load -- Chapter 8: Extreme Learning Machine for Economic Dispatch with High Penetration of Wind Power -- Chapter 9: Data-driven Bayesian Assisted Optimization Algorithm for Dispatch of Highly Renewable Energy Power Systems -- Chapter 10: Multi-objective Optimization Approach for Coordinated Scheduling of Electric Vehicles-Wind Integrated Power Systems -- Chapter 11: Deep Reinforcement Learning Assisted Optimization Algorithm for Many-Objective Distribution Network Reconfiguration -- Chapter 12: Federated Multi-Agent Deep Reinforcement Learning Approach via Physic-Informed Reward for Multi-Microgrid Energy Management -- Chapter 13: Supply Function Game Based Energy Management Between Electric Vehicle Charging Stations and Electricity Distribution System.
Record Nr. UNINA-9910733734903321
Li Yuanzheng  
Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flexible Load Control for Enhancing Renewable Power System Operation / / by Yuanzheng Li, Yang Li, Zhigang Zeng
Flexible Load Control for Enhancing Renewable Power System Operation / / by Yuanzheng Li, Yang Li, Zhigang Zeng
Autore Li Yuanzheng
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (288 pages)
Disciplina 621.31
Collana Power Systems
Soggetto topico Electric power distribution
Automatic control
Artificial intelligence
Energy Grids and Networks
Control and Systems Theory
Artificial Intelligence
ISBN 981-9703-12-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Overview of flexible load control -- Chapter 2. Data center flexible load control for renewable energy integration -- Chapter 3. Data center load control based microgrid operation via robust multi-objective optimization -- Chapter 4. Collaborative control of data center and hydrogen storage system for renewable energy absorption -- Chapter 5. Flexible industrial load control for renewable power system operation -- Chapter 6. A demand-supply cooperative responding control of industrial load and renewable power system -- Chapter 7. Electric vehicle flexible charging load control for renewable power system operation -- Chapter 8. Battery swapping control for centralized electric vehicle charging system with photovoltaic -- Chapter 9. Coordinated Operation Between Electric Vehicle Charging Stations and Distribution Power Network Considering Energy and Reserve -- Chapter 10. Flexible integrated load control based comprehensive energy system operation -- Chapter 11. Data-driven distributionally robust scheduling of community comprehensive energy systems considering integrated load control -- Chapter 12. Concluding remarks.
Record Nr. UNINA-9910842497403321
Li Yuanzheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui