top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Alternating Current Field Measurement Technique for Detection and Measurement of Cracks in Structures / / by Wei Li, Xin'an Yuan, Jianming Zhao, Xiaokang Yin, Xiao Li
Alternating Current Field Measurement Technique for Detection and Measurement of Cracks in Structures / / by Wei Li, Xin'an Yuan, Jianming Zhao, Xiaokang Yin, Xiao Li
Autore Li Wei
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (X, 148 p. 126 illus., 111 illus. in color.)
Disciplina 621.381
Soggetto topico Electronics
Petrology
Mechanical engineering
Electronics and Microelectronics, Instrumentation
Mechanical Engineering
ISBN 981-9772-55-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Research on Real-time and High- precision Cracks Inversion Algorithm for ACFM Based on GA-BP Neural Network -- Identification of Tiny Surface Cracks in a Rugged Weld by Signal Gradient Algorithm using the ACFM Technique -- Visual Evaluation of Irregular Cracks in Steel by Double Gradient Fusion Algorithm using Composite ACFM-MFL Testing Method -- Design and Experiment Research of Oblique Crack Detection System for Rail Tread Based on ACFM Technique -- Design and testing of high-resolution probe arrays using Alternating Current Field Measurement technique -- Design and experimental study of inner uniform electromagnetic probe in stainless steel pipe -- Research on the detection of surface cracks on drilling riser using the chain alternating current field measurement probe array -- An electromagnetic Helmholtz-coil probe for arbitrary orientation crack detection on the surface of pipeline -- Circumferential Current Field Testing System with TMR Sensor Array for Non-contact Detection and Estimation of Cracks on Power Plant Piping.
Record Nr. UNINA-9910890900703321
Li Wei  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid organic-inorganic perovskites : modeling, state estimation, and control / / Wei Li [and three others]
Hybrid organic-inorganic perovskites : modeling, state estimation, and control / / Wei Li [and three others]
Autore Li Wei
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2020
Descrizione fisica 1 online resource (293 pages)
Disciplina 540
Soggetto topico Hybrid perovskites
Soggetto genere / forma Electronic books.
ISBN 1-5231-3669-3
3-527-34436-5
3-527-34433-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555170903321
Li Wei  
Weinheim, Germany : , : Wiley-VCH, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid organic-inorganic perovskites : modeling, state estimation, and control / / Wei Li [and three others]
Hybrid organic-inorganic perovskites : modeling, state estimation, and control / / Wei Li [and three others]
Autore Li Wei
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2020
Descrizione fisica 1 online resource (293 pages)
Disciplina 540
Soggetto topico Hybrid perovskites
ISBN 1-5231-3669-3
3-527-34436-5
3-527-34433-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830727303321
Li Wei  
Weinheim, Germany : , : Wiley-VCH, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Logic : Foundations for Information Science / / by Wei Li
Mathematical Logic : Foundations for Information Science / / by Wei Li
Autore Li Wei
Edizione [2nd ed. 2014.]
Pubbl/distr/stampa Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2014
Descrizione fisica 1 online resource (XIV, 301 p. 13 illus.)
Disciplina 511.3
Collana Progress in Computer Science and Applied Logic
Soggetto topico Mathematical logic
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
ISBN 3-0348-0862-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Preface to the Second Edition -- I Elements of Mathematical Logic -- 1 Syntax of First-Order Languages -- 2 Models of First-Order Languages -- 3 Formal Inference Systems -- 4 Computability & Representability -- 5 Gödel Theorems -- II Logical Framework of Scientific Discovery -- 6 Sequences of Formal Theories -- 7 Revision Calculus -- 8 Version Sequences -- 9 Inductive Inference -- 10 Meta-Language Environments -- Appendix 1 Sets and Maps -- Appendix 2 Proof of the Representability Theorem -- Bibliography -- Index.
Record Nr. UNINA-9910768186603321
Li Wei  
Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
R-CALCULUS : a logic of belief revision / / Wei Li, Yuefei Sui
R-CALCULUS : a logic of belief revision / / Wei Li, Yuefei Sui
Autore Li Wei
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (210 pages)
Disciplina 515
Collana Perspectives in Formal Induction, Revision and Evolution
Soggetto topico Calculus
Software
Mathematical Concepts
R (Computer program language)
ISBN 981-16-2944-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Series -- Preface -- Contents -- 1 Introduction -- 1.1 Belief Revision -- 1.2 R-Calculus -- 1.3 Extending R-Calculus -- 1.4 Approximate R-Calculus -- 1.5 Applications of R-Calculus -- References -- 2 Preliminaries -- 2.1 Propositional Logic -- 2.1.1 Syntax and Semantics -- 2.1.2 Gentzen Deduction System -- 2.1.3 Soundness and Completeness Theorem -- 2.2 First-Order Logic -- 2.2.1 Syntax and Semantics -- 2.2.2 Gentzen Deduction System -- 2.2.3 Soundness and Completeness Theorem -- 2.3 Description Logic -- 2.3.1 Syntax and Semantics -- 2.3.2 Gentzen Deduction System -- 2.3.3 Completeness Theorem -- References -- 3 R-Calculi for Propositional Logic -- 3.1 Minimal Changes -- 3.1.1 Subset-Minimal Change -- 3.1.2 Pseudo-Subformulas-Minimal Change -- 3.1.3 Deduction-Based Minimal Change -- 3.2 R-Calculus for subseteq-Minimal Change -- 3.2.1 R-Calculus S for a Formula -- 3.2.2 R-Calculus S for a Theory -- 3.2.3 AGM Postulates Asubseteq for subseteq-Minimal Change -- 3.3 R-Calculus for preceq-Minimal Change -- 3.3.1 R-Calculus T for a Formula -- 3.3.2 R-Calculus T for a Theory -- 3.3.3 AGM Postulates Apreceq for preceq-Minimal Change -- 3.4 R-Calculus for vdashpreceq-Minimal Change -- 3.4.1 R-Calculus U for a Formula -- 3.4.2 R-Calculus U for a Theory -- References -- 4 R-Calculi for Description Logics -- 4.1 R-Calculus for subseteq-Minimal Change -- 4.1.1 R-Calculus SDL for a Statement -- 4.1.2 R-Calculus SDL for a Set of Statements -- 4.2 R-Calculus for preceq-Minimal Change -- 4.2.1 Pseudo-Subconcept-Minimal Change -- 4.2.2 R-Calculus TDL for a Statement -- 4.2.3 R-Calculus TDL for a Set of Statements -- 4.3 Discussion on R-Calculus for vdashpreceq-Minimal Change -- References -- 5 R-Calculi for Modal Logic -- 5.1 Propositional Modal Logic -- 5.2 R-Calculus SM for subseteq-Minimal Change.
5.3 R-Calculus TM for preceq-Minimal Change -- 5.4 R-Modal Logic -- 5.4.1 A Logical Language of R-Modal Logic -- 5.4.2 R-Modal Logic -- References -- 6 R-Calculi for Logic Programming -- 6.1 Logic Programming -- 6.1.1 Gentzen Deduction Systems -- 6.1.2 Dual Gentzen Deduction System -- 6.1.3 Minimal Change -- 6.2 R-Calculus SLP for subset-Minimal Change -- 6.3 R-Calculus TLP for preceq-Minimal Change -- References -- 7 R-Calculi for First-Order Logic -- 7.1 R-Calculus for subseteq-Minimal Change -- 7.1.1 R-Calculus SFOL for a Formula -- 7.1.2 R-Calculus SFOL for a Theory -- 7.2 R-Calculus for preceq-Minimal Change -- 7.2.1 R-Calculus TFOL for a Formula -- 7.2.2 R-Calculus TFOL for a Theory -- References -- 8 Nonmonotonicity of R-Calculus -- 8.1 Nonmonotonic Propositional Logic -- 8.1.1 Monotonic Gentzen Deduction System G'1 -- 8.1.2 Nonmonotonic Gentzen Deduction System Logic G2 -- 8.1.3 Nonmonotonicity of G2 -- 8.2 Involvement of ΓA in a Nonmonotonic Logic -- 8.2.1 Default Logic -- 8.2.2 Circumscription -- 8.2.3 Autoepistemic Logic -- 8.2.4 Logic Programming with Negation as Failure -- 8.3 Correspondence Between R-Calculus and Default Logic -- 8.3.1 Transformation from R-Calculus to Default Logic -- 8.3.2 Transformation from Default Logic to R-Calculus -- References -- 9 Approximate R-Calculus -- 9.1 Finite Injury Priority Method -- 9.1.1 Post's Problem -- 9.1.2 Construction with Oracle -- 9.1.3 Finite Injury Priority Method -- 9.2 Approximate Deduction -- 9.2.1 Approximate Deduction System for First-Order Logic -- 9.3 R-Calculus Fapp and Finite Injury Priority Method -- 9.3.1 Construction with Oracle -- 9.3.2 Approximate Deduction System Fapp -- 9.3.3 Recursive Construction -- 9.3.4 Approximate R-Calculus Frec -- 9.4 Default Logic and Priority Method -- 9.4.1 Construction of an Extension Without Injury.
9.4.2 Construction of a Strong Extension with Finite Injury Priority Method -- References -- 10 An Application to Default Logic -- 10.1 Default Logic and Subset-Minimal Change -- 10.1.1 Deduction System SD for a Default -- 10.1.2 Deduction System SD for a Set of Defaults -- 10.2 Default Logic and Pseudo-subformula-minimal Change -- 10.2.1 Deduction System TD for a Default -- 10.2.2 Deduction System TD for a Set of Defaults -- 10.3 Default Logic and Deduction-Based Minimal Change -- 10.3.1 Deduction System UD for a Default -- 10.3.2 Deduction System UD for a Set of Defaults -- References -- 11 An Application to Semantic Networks -- 11.1 Semantic Networks -- 11.1.1 Basic Definitions -- 11.1.2 Deduction System G4 for Semantic Networks -- 11.1.3 Soundness and Completeness Theorem -- 11.2 R-Calculus for subseteq-Minimal Change -- 11.2.1 R-Calculus SSN for a Statement -- 11.2.2 Soundness and Completeness Theorem -- 11.2.3 Examples -- 11.3 R-Calculus for preceq-Minimal Change -- 11.3.1 R-Calculus TSN for a Statement -- 11.3.2 Soundness and Completeness Theorem of TSN -- References -- Index.
Record Nr. UNISA-996464408403316
Li Wei  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
R-CALCULUS : a logic of belief revision / / Wei Li, Yuefei Sui
R-CALCULUS : a logic of belief revision / / Wei Li, Yuefei Sui
Autore Li Wei
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (210 pages)
Disciplina 515
Collana Perspectives in Formal Induction, Revision and Evolution
Soggetto topico Calculus
Software
Mathematical Concepts
R (Computer program language)
ISBN 981-16-2944-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Series -- Preface -- Contents -- 1 Introduction -- 1.1 Belief Revision -- 1.2 R-Calculus -- 1.3 Extending R-Calculus -- 1.4 Approximate R-Calculus -- 1.5 Applications of R-Calculus -- References -- 2 Preliminaries -- 2.1 Propositional Logic -- 2.1.1 Syntax and Semantics -- 2.1.2 Gentzen Deduction System -- 2.1.3 Soundness and Completeness Theorem -- 2.2 First-Order Logic -- 2.2.1 Syntax and Semantics -- 2.2.2 Gentzen Deduction System -- 2.2.3 Soundness and Completeness Theorem -- 2.3 Description Logic -- 2.3.1 Syntax and Semantics -- 2.3.2 Gentzen Deduction System -- 2.3.3 Completeness Theorem -- References -- 3 R-Calculi for Propositional Logic -- 3.1 Minimal Changes -- 3.1.1 Subset-Minimal Change -- 3.1.2 Pseudo-Subformulas-Minimal Change -- 3.1.3 Deduction-Based Minimal Change -- 3.2 R-Calculus for subseteq-Minimal Change -- 3.2.1 R-Calculus S for a Formula -- 3.2.2 R-Calculus S for a Theory -- 3.2.3 AGM Postulates Asubseteq for subseteq-Minimal Change -- 3.3 R-Calculus for preceq-Minimal Change -- 3.3.1 R-Calculus T for a Formula -- 3.3.2 R-Calculus T for a Theory -- 3.3.3 AGM Postulates Apreceq for preceq-Minimal Change -- 3.4 R-Calculus for vdashpreceq-Minimal Change -- 3.4.1 R-Calculus U for a Formula -- 3.4.2 R-Calculus U for a Theory -- References -- 4 R-Calculi for Description Logics -- 4.1 R-Calculus for subseteq-Minimal Change -- 4.1.1 R-Calculus SDL for a Statement -- 4.1.2 R-Calculus SDL for a Set of Statements -- 4.2 R-Calculus for preceq-Minimal Change -- 4.2.1 Pseudo-Subconcept-Minimal Change -- 4.2.2 R-Calculus TDL for a Statement -- 4.2.3 R-Calculus TDL for a Set of Statements -- 4.3 Discussion on R-Calculus for vdashpreceq-Minimal Change -- References -- 5 R-Calculi for Modal Logic -- 5.1 Propositional Modal Logic -- 5.2 R-Calculus SM for subseteq-Minimal Change.
5.3 R-Calculus TM for preceq-Minimal Change -- 5.4 R-Modal Logic -- 5.4.1 A Logical Language of R-Modal Logic -- 5.4.2 R-Modal Logic -- References -- 6 R-Calculi for Logic Programming -- 6.1 Logic Programming -- 6.1.1 Gentzen Deduction Systems -- 6.1.2 Dual Gentzen Deduction System -- 6.1.3 Minimal Change -- 6.2 R-Calculus SLP for subset-Minimal Change -- 6.3 R-Calculus TLP for preceq-Minimal Change -- References -- 7 R-Calculi for First-Order Logic -- 7.1 R-Calculus for subseteq-Minimal Change -- 7.1.1 R-Calculus SFOL for a Formula -- 7.1.2 R-Calculus SFOL for a Theory -- 7.2 R-Calculus for preceq-Minimal Change -- 7.2.1 R-Calculus TFOL for a Formula -- 7.2.2 R-Calculus TFOL for a Theory -- References -- 8 Nonmonotonicity of R-Calculus -- 8.1 Nonmonotonic Propositional Logic -- 8.1.1 Monotonic Gentzen Deduction System G'1 -- 8.1.2 Nonmonotonic Gentzen Deduction System Logic G2 -- 8.1.3 Nonmonotonicity of G2 -- 8.2 Involvement of ΓA in a Nonmonotonic Logic -- 8.2.1 Default Logic -- 8.2.2 Circumscription -- 8.2.3 Autoepistemic Logic -- 8.2.4 Logic Programming with Negation as Failure -- 8.3 Correspondence Between R-Calculus and Default Logic -- 8.3.1 Transformation from R-Calculus to Default Logic -- 8.3.2 Transformation from Default Logic to R-Calculus -- References -- 9 Approximate R-Calculus -- 9.1 Finite Injury Priority Method -- 9.1.1 Post's Problem -- 9.1.2 Construction with Oracle -- 9.1.3 Finite Injury Priority Method -- 9.2 Approximate Deduction -- 9.2.1 Approximate Deduction System for First-Order Logic -- 9.3 R-Calculus Fapp and Finite Injury Priority Method -- 9.3.1 Construction with Oracle -- 9.3.2 Approximate Deduction System Fapp -- 9.3.3 Recursive Construction -- 9.3.4 Approximate R-Calculus Frec -- 9.4 Default Logic and Priority Method -- 9.4.1 Construction of an Extension Without Injury.
9.4.2 Construction of a Strong Extension with Finite Injury Priority Method -- References -- 10 An Application to Default Logic -- 10.1 Default Logic and Subset-Minimal Change -- 10.1.1 Deduction System SD for a Default -- 10.1.2 Deduction System SD for a Set of Defaults -- 10.2 Default Logic and Pseudo-subformula-minimal Change -- 10.2.1 Deduction System TD for a Default -- 10.2.2 Deduction System TD for a Set of Defaults -- 10.3 Default Logic and Deduction-Based Minimal Change -- 10.3.1 Deduction System UD for a Default -- 10.3.2 Deduction System UD for a Set of Defaults -- References -- 11 An Application to Semantic Networks -- 11.1 Semantic Networks -- 11.1.1 Basic Definitions -- 11.1.2 Deduction System G4 for Semantic Networks -- 11.1.3 Soundness and Completeness Theorem -- 11.2 R-Calculus for subseteq-Minimal Change -- 11.2.1 R-Calculus SSN for a Statement -- 11.2.2 Soundness and Completeness Theorem -- 11.2.3 Examples -- 11.3 R-Calculus for preceq-Minimal Change -- 11.3.1 R-Calculus TSN for a Statement -- 11.3.2 Soundness and Completeness Theorem of TSN -- References -- Index.
Record Nr. UNINA-9910508455003321
Li Wei  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
R-calculus, III : post three-valued logic / / Wei Li, Yuefei Sui
R-calculus, III : post three-valued logic / / Wei Li, Yuefei Sui
Autore Li Wei
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (284 pages)
Disciplina 515
Collana Perspectives in formal induction, revision and evolution
Soggetto topico Calculus
Computer logic
Proof theory
ISBN 981-19-4270-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Series -- Preface -- Contents -- 1 Introduction -- 1.1 Three-Valued Logics -- 1.2 Deduction Systems -- 1.3 R-Calculi -- 1.4 More -- 1.5 Basic Definitions -- 1.5.1 Post Three-Valued Logic -- 1.5.2 Post Three-Valued Description Logic -- 1.5.3 Remarks -- 1.6 Types of Deduction Rules -- 1.7 Notations -- References -- 2 Many-Placed Sequents -- 2.1 Zach's Theorem -- 2.2 Analysis of Zach's Theorem -- 2.3 Tableau Proof Systems -- 2.3.1 Tableau Proof System Tt -- 2.3.2 Tableau Proof System Tm -- 2.3.3 Tableau Proof System Tf -- 2.4 Incompleteness of Deduction System T'' -- References -- 3 Modalized Three-Valued Logics -- 3.1 Bochvar Three-Valued Logic -- 3.1.1 Basic Definitions -- 3.1.2 Multisequent Deduction System Mb -- 3.2 Kleene Three-Valued Logic -- 3.2.1 Basic Definitions -- 3.2.2 Gentzen Deduction System Gk -- 3.3 Łukasiewicz's Three-Valued Logic -- 3.3.1 Basic Definitions -- 3.3.2 Tableau Proof System Tl -- References -- 4 Post Three-Valued Logic -- 4.1 Theories -- 4.1.1 Tableau Proof System Tt -- 4.1.2 Tableau Proof System Tm -- 4.1.3 Tableau Proof System Tf -- 4.1.4 Transformations -- 4.1.5 Tableau Proof System Tt -- 4.1.6 Tableau Proof System Tm -- 4.1.7 Tableau Proof System Tf -- 4.2 Sequents -- 4.2.1 Gentzen Deduction System Gt -- 4.2.2 Gentzen Deduction System Gm -- 4.2.3 Gentzen Deduction System Gf -- 4.2.4 Gentzen Deduction System Gt -- 4.2.5 Gentzen Deduction System Gm -- 4.2.6 Gentzen Deduction System Gf -- 4.3 Multisequents -- 4.3.1 Gentzen Deduction System M= -- 4.3.2 Simplified Ms= -- 4.3.3 Gentzen Deduction System M= -- 4.3.4 Simplified Ms= -- 4.3.5 Cut Elimination Theorem -- References -- 5 R-Calculi for Post Three-Valued Logic -- 5.1 R-Calculus for Theories -- 5.1.1 R-Calculus Rt -- 5.1.2 R-Calculus Rt -- 5.2 R-Calculi East for Sequents -- 5.2.1 R-Calculus Et -- 5.2.2 R-Calculus Em -- 5.2.3 Basic Theorems.
5.3 R-Calculi for Multisequents -- 5.3.1 R-Calculus K= -- 5.3.2 Simplified K=s -- 5.3.3 R-Calculus K= -- 5.3.4 R-Calculus K=s -- References -- 6 Post Three-Valued Description Logic -- 6.1 Theories -- 6.1.1 Tableau Proof System St -- 6.1.2 Tableau Proof System St -- 6.2 Sequents -- 6.2.1 Gentzen Deduction System Ft -- 6.2.2 Gentzen Deduction System Ft -- 6.3 Multisequents -- 6.3.1 Gentzen Deduction System L= -- 6.3.2 Simplified Ls= -- 6.3.3 Gentzen Deduction System L= -- 6.3.4 Simplified Ls= -- References -- 7 R-Calculi for Post Three-Valued Description Logic -- 7.1 R-Calculus for Theories -- 7.1.1 R-Calculus Qt -- 7.1.2 R-Calculus Qt -- 7.2 R-Calculi for Sequents -- 7.2.1 R-Calculus Dt -- 7.2.2 R-Calculus Dm -- 7.3 R-Calculi for Multisequents -- 7.3.1 R-Calculus J= -- 7.3.2 Simplified J=s -- 7.3.3 Simplified J= -- References -- 8 R-Calculi for Corner Multisequents -- 8.1 Corner Multisequents MQQQ= -- 8.1.1 Axioms -- 8.1.2 Deduction Rules -- 8.1.3 Deduction Systems -- 8.2 Corner Multisequents MQQQ= -- 8.2.1 Axioms -- 8.2.2 Deduction Rules -- 8.2.3 Deduction Systems -- 8.3 R-Calculi KQQQ=/KQQQ= -- 8.3.1 Axioms -- 8.3.2 Deduction Rules -- 8.3.3 Deduction Systems -- 8.4 R-Calculi JQQQ=/JQQQ= -- 8.4.1 Axioms -- 8.4.2 Deduction Rules -- 8.4.3 Deduction Systems -- References -- 9 General Multisequents -- 9.1 General Multisequents -- 9.2 Axioms -- 9.2.1 Axioms for M=/M= -- 9.2.2 Axioms for L=/L=-Validity -- 9.3 Deduction Rules -- 9.4 Deduction Systems -- References -- 10 R-Calculi for General Multisequents -- 10.1 R-Calculi K=Q1Q2Q3/K=Q1Q2Q3/J=Q1Q2Q3/J=Q1Q2Q3 -- 10.2 Axioms -- 10.2.1 Axioms for K=Q1Q2Q3/K=Q1Q2Q3 -- 10.2.2 Axioms for J=Q1Q2Q3/J=Q1Q2Q3 -- 10.3 Deduction Rules -- 10.3.1 R+= -- 10.3.2 R+= -- 10.3.3 R-= -- 10.3.4 R-= -- 10.4 Deduction Systems -- References.
Record Nr. UNISA-996499855203316
Li Wei  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
R-calculus, III : post three-valued logic / / Wei Li, Yuefei Sui
R-calculus, III : post three-valued logic / / Wei Li, Yuefei Sui
Autore Li Wei
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (284 pages)
Disciplina 515
Collana Perspectives in formal induction, revision and evolution
Soggetto topico Calculus
Computer logic
Proof theory
ISBN 981-19-4270-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Series -- Preface -- Contents -- 1 Introduction -- 1.1 Three-Valued Logics -- 1.2 Deduction Systems -- 1.3 R-Calculi -- 1.4 More -- 1.5 Basic Definitions -- 1.5.1 Post Three-Valued Logic -- 1.5.2 Post Three-Valued Description Logic -- 1.5.3 Remarks -- 1.6 Types of Deduction Rules -- 1.7 Notations -- References -- 2 Many-Placed Sequents -- 2.1 Zach's Theorem -- 2.2 Analysis of Zach's Theorem -- 2.3 Tableau Proof Systems -- 2.3.1 Tableau Proof System Tt -- 2.3.2 Tableau Proof System Tm -- 2.3.3 Tableau Proof System Tf -- 2.4 Incompleteness of Deduction System T'' -- References -- 3 Modalized Three-Valued Logics -- 3.1 Bochvar Three-Valued Logic -- 3.1.1 Basic Definitions -- 3.1.2 Multisequent Deduction System Mb -- 3.2 Kleene Three-Valued Logic -- 3.2.1 Basic Definitions -- 3.2.2 Gentzen Deduction System Gk -- 3.3 Łukasiewicz's Three-Valued Logic -- 3.3.1 Basic Definitions -- 3.3.2 Tableau Proof System Tl -- References -- 4 Post Three-Valued Logic -- 4.1 Theories -- 4.1.1 Tableau Proof System Tt -- 4.1.2 Tableau Proof System Tm -- 4.1.3 Tableau Proof System Tf -- 4.1.4 Transformations -- 4.1.5 Tableau Proof System Tt -- 4.1.6 Tableau Proof System Tm -- 4.1.7 Tableau Proof System Tf -- 4.2 Sequents -- 4.2.1 Gentzen Deduction System Gt -- 4.2.2 Gentzen Deduction System Gm -- 4.2.3 Gentzen Deduction System Gf -- 4.2.4 Gentzen Deduction System Gt -- 4.2.5 Gentzen Deduction System Gm -- 4.2.6 Gentzen Deduction System Gf -- 4.3 Multisequents -- 4.3.1 Gentzen Deduction System M= -- 4.3.2 Simplified Ms= -- 4.3.3 Gentzen Deduction System M= -- 4.3.4 Simplified Ms= -- 4.3.5 Cut Elimination Theorem -- References -- 5 R-Calculi for Post Three-Valued Logic -- 5.1 R-Calculus for Theories -- 5.1.1 R-Calculus Rt -- 5.1.2 R-Calculus Rt -- 5.2 R-Calculi East for Sequents -- 5.2.1 R-Calculus Et -- 5.2.2 R-Calculus Em -- 5.2.3 Basic Theorems.
5.3 R-Calculi for Multisequents -- 5.3.1 R-Calculus K= -- 5.3.2 Simplified K=s -- 5.3.3 R-Calculus K= -- 5.3.4 R-Calculus K=s -- References -- 6 Post Three-Valued Description Logic -- 6.1 Theories -- 6.1.1 Tableau Proof System St -- 6.1.2 Tableau Proof System St -- 6.2 Sequents -- 6.2.1 Gentzen Deduction System Ft -- 6.2.2 Gentzen Deduction System Ft -- 6.3 Multisequents -- 6.3.1 Gentzen Deduction System L= -- 6.3.2 Simplified Ls= -- 6.3.3 Gentzen Deduction System L= -- 6.3.4 Simplified Ls= -- References -- 7 R-Calculi for Post Three-Valued Description Logic -- 7.1 R-Calculus for Theories -- 7.1.1 R-Calculus Qt -- 7.1.2 R-Calculus Qt -- 7.2 R-Calculi for Sequents -- 7.2.1 R-Calculus Dt -- 7.2.2 R-Calculus Dm -- 7.3 R-Calculi for Multisequents -- 7.3.1 R-Calculus J= -- 7.3.2 Simplified J=s -- 7.3.3 Simplified J= -- References -- 8 R-Calculi for Corner Multisequents -- 8.1 Corner Multisequents MQQQ= -- 8.1.1 Axioms -- 8.1.2 Deduction Rules -- 8.1.3 Deduction Systems -- 8.2 Corner Multisequents MQQQ= -- 8.2.1 Axioms -- 8.2.2 Deduction Rules -- 8.2.3 Deduction Systems -- 8.3 R-Calculi KQQQ=/KQQQ= -- 8.3.1 Axioms -- 8.3.2 Deduction Rules -- 8.3.3 Deduction Systems -- 8.4 R-Calculi JQQQ=/JQQQ= -- 8.4.1 Axioms -- 8.4.2 Deduction Rules -- 8.4.3 Deduction Systems -- References -- 9 General Multisequents -- 9.1 General Multisequents -- 9.2 Axioms -- 9.2.1 Axioms for M=/M= -- 9.2.2 Axioms for L=/L=-Validity -- 9.3 Deduction Rules -- 9.4 Deduction Systems -- References -- 10 R-Calculi for General Multisequents -- 10.1 R-Calculi K=Q1Q2Q3/K=Q1Q2Q3/J=Q1Q2Q3/J=Q1Q2Q3 -- 10.2 Axioms -- 10.2.1 Axioms for K=Q1Q2Q3/K=Q1Q2Q3 -- 10.2.2 Axioms for J=Q1Q2Q3/J=Q1Q2Q3 -- 10.3 Deduction Rules -- 10.3.1 R+= -- 10.3.2 R+= -- 10.3.3 R-= -- 10.3.4 R-= -- 10.4 Deduction Systems -- References.
Record Nr. UNINA-9910631080703321
Li Wei  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
R-Calculus, IV : propositional logic / / Wei Li and Yuefei Sui
R-Calculus, IV : propositional logic / / Wei Li and Yuefei Sui
Autore Li Wei
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (264 pages)
Disciplina 810
Collana Perspectives in Formal Induction, Revision and Evolution
Soggetto topico Propositional calculus
ISBN 9789811986338
9789811986321
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- R-calculus for simplified propositional logics -- R-calculi for tableau/Gentzen deduction systems -- R-calculi RQ1Q2/RQ1Q2 -- R-calculi RQ1iQ2j/RQ1iQ2j -- R-Calculi: RY1Q1iY2Q2j/RY1Q1iY2Q2j -- R-calculi for supersequents -- R-calculi for propositional logic.
Record Nr. UNINA-9910683352003321
Li Wei  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
R-Calculus, IV : propositional logic / / Wei Li and Yuefei Sui
R-Calculus, IV : propositional logic / / Wei Li and Yuefei Sui
Autore Li Wei
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (264 pages)
Disciplina 810
Collana Perspectives in Formal Induction, Revision and Evolution
Soggetto topico Propositional calculus
ISBN 9789811986338
9789811986321
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- R-calculus for simplified propositional logics -- R-calculi for tableau/Gentzen deduction systems -- R-calculi RQ1Q2/RQ1Q2 -- R-calculi RQ1iQ2j/RQ1iQ2j -- R-Calculi: RY1Q1iY2Q2j/RY1Q1iY2Q2j -- R-calculi for supersequents -- R-calculi for propositional logic.
Record Nr. UNISA-996546834003316
Li Wei  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui