Vai al contenuto principale della pagina

Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Li Cai-Heng Visualizza persona
Titolo: Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups Visualizza cluster
Pubblicazione: Providence : , : American Mathematical Society, , 2022
©2022
Edizione: 1st ed.
Descrizione fisica: 1 online resource (112 pages)
Disciplina: 512/.23
512.23
Soggetto topico: Finite groups
Group theory
Group theory and generalizations -- Abstract finite groups -- Products of subgroups
Group theory and generalizations -- Abstract finite groups -- Simple groups: alternating groups and groups of Lie type
Group theory and generalizations -- Abstract finite groups -- Simple groups: sporadic groups
Combinatorics -- Algebraic combinatorics -- Group actions on combinatorial structures
Classificazione: 20D4020D0620D0805E18
Altri autori: XiaBinzhou  
Nota di contenuto: Cover -- Title page -- Chapter 1. Introduction -- 1.1. Factorizations of almost simple groups -- 1.2. -Arc-transitive Cayley graphs -- 1.3. Discussions and some open problems -- Chapter 2. Preliminaries -- 2.1. Notation -- 2.2. Results on finite simple groups -- 2.3. Elementary facts concerning factorizations -- 2.4. Maximal factorizations of almost simple groups -- Chapter 3. The factorizations of linear and unitary groups of prime dimension -- 3.1. Singer cycles -- 3.2. Linear groups of prime dimension -- 3.3. Unitary groups of prime dimension -- Chapter 4. Non-classical groups -- 4.1. The case that both factors are solvable -- 4.2. Exceptional groups of Lie type -- 4.3. Alternating group socles -- 4.4. Sporadic group socles -- Chapter 5. Examples in classical groups -- 5.1. Examples in unitary groups -- 5.2. Examples in symplectic groups -- 5.3. Examples in orthogonal groups of odd dimension -- 5.4. Examples in orthogonal groups of plus type -- Chapter 6. Reduction for classical groups -- 6.1. Inductive hypothesis -- 6.2. The case that has at least two non-solvable composition factors -- Chapter 7. Proof of Theorem 1.1 -- 7.1. Linear groups -- 7.2. Symplectic Groups -- 7.3. Unitary Groups -- 7.4. Orthogonal groups of odd dimension -- 7.5. Orthogonal groups of even dimension -- 7.6. Completion of the proof -- Chapter 8. -Arc-transitive Cayley graphs of solvable groups -- 8.1. Preliminaries -- 8.2. A property of finite simple groups -- 8.3. Reduction to affine and almost simple groups -- 8.4. Proof of Theorem 1.3 and Corollary 1.5 -- Appendix A. Tables for nontrivial maximal factorizations of almost simple classical groups -- Bibliography -- Back Cover.
Sommario/riassunto: "A characterization is given for the factorizations of almost simple groups with a solvable factor. It turns out that there are only several infinite families of these nontrivial factorizations, and an almost simple group with such a factorization cannot have socle exceptional Lie type or orthogonal of minus type. The characterization is then applied to study s-arc-transitive Cayley graphs of solvable groups, leading to a striking corollary that, except for cycles, a non-bipartite connected 3-arc-transitive Cayley graph of a finite solvable group is necessarily a normal cover of the Petersen graph or the Hoffman-Singleton graph"--
Titolo autorizzato: Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups  Visualizza cluster
ISBN: 9781470472290
1470472295
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910970915503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society