top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Chemistry : Introduction to the Theory and Applications of Molecular and Quantum Mechanics
Computational Chemistry : Introduction to the Theory and Applications of Molecular and Quantum Mechanics
Autore Lewars Errol G
Edizione [4th ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (757 pages)
Disciplina 541/.01/13
ISBN 9783031514432
9783031514425
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Fourth Edition -- Contents -- Chapter 1: An Outline of What Computational Chemistry Is All About -- 1.1 What You Can Do with Computational Chemistry -- 1.2 The Tools of Computational Chemistry -- 1.2.1 Application Perspective -- 1.2.2 Historical Perspective -- 1.3 Putting It All Together -- 1.4 The Philosophy of Computational Chemistry -- 1.5 Summary -- Easier Questions -- Harder Questions -- References -- Chapter 2: The Concept of the Potential Energy Surface -- 2.1 Perspective -- 2.2 Stationary Points -- 2.3 The Born−Oppenheimer Approximation -- 2.4 Geometry Optimization -- 2.5 Stationary Points and Normal-Mode Vibrations. Zero Point Energy -- 2.6 Symmetry -- 2.7 Summary -- Easier Questions -- Harder Questions -- References -- Chapter 3: Molecular Mechanics -- 3.1 Perspective -- 3.2 The Basic Principles of Molecular Mechanics -- 3.2.1 Developing a Forcefield -- 3.2.2 Parameterizing a Forcefield -- 3.2.3 A Calculation Using Our Forcefield -- 3.3 Examples of the Use of Molecular Mechanics -- 3.3.1 To Obtain Reasonable Geometries, Possibly for as Inputs for Lengthier (i.e., Ab Initio, Semiempirical, or Density Functional Kinds of Calculations) -- 3.3.2 To Obtain Good Geometries (and Perhaps Relative Energies) for Small- to Medium-Sized Molecules -- 3.3.3 To Calculate Geometries and Relative Energies of Very Large Molecules, Usually Polymeric Biomolecules (Proteins and Nucleic Acids) -- 3.3.4 To Calculate Heats of Formation -- 3.3.5 To Generate the Potential Energy Function Under Which Molecules Move, for Molecular Dynamics or Monte Carlo Calculations -- 3.3.6 As a (Usually Quick) Guide to the Feasibility of, or Likely Outcome of, Reactions in Organic Synthesis -- 3.4 Frequencies and Vibrational Spectra Calculated by MM -- 3.5 Strengths and Weaknesses of Molecular Mechanics -- 3.6 Summary -- Easier Questions.
Harder Questions -- References -- Chapter 4: Introduction to Quantum Mechanics in Computational Chemistry -- 4.1 Perspective -- 4.2 The Development of Quantum Mechanics. The Schrödinger Equation -- 4.2.1 The Origins of Quantum Theory: Blackbody Radiation and the Photoelectric Effect -- 4.2.1.1 Blackbody Radiation -- 4.2.1.2 The Photoelectric Effect -- 4.2.2 Radioactivity -- 4.2.3 Relativity -- 4.2.4 The Nuclear Atom -- 4.2.5 The Bohr Atom -- 4.2.6 The Wave Mechanical Atom and the Schrödinger Equation -- 4.3 The Application of the Schrödinger Equation to Chemistry by Hückel -- 4.3.1 Introduction -- 4.3.2 Hybridization -- 4.3.3 Matrices and Determinants -- 4.3.3.1 Addition and Subtraction -- 4.3.3.2 Multiplication by a Scalar -- 4.3.3.3 Matrix Multiplication -- 4.3.3.4 Some Important Kinds of Matrices -- 4.3.3.5 Matrix Diagonalization -- 4.3.3.6 Determinants -- 4.3.3.7 Some Properties of Determinants -- 4.3.4 The Simple Hückel Method: Theory -- 4.3.5 The Simple Hückel Method: Applications -- 4.3.5.1 The Nodal Properties of the MOs -- 4.3.5.2 Stability as Indicated by Energy Levels, and Aromaticity -- 4.3.5.3 Resonance Energies -- 4.3.5.4 Bond Orders -- 4.3.5.5 Atomic Charges -- 4.3.5.6 Methylenecyclopropene -- 4.3.6 Strengths and Weaknesses of the Simple Hückel Method -- 4.3.6.1 Strengths -- 4.3.6.2 Weaknesses -- 4.3.7 The Determinant Method of Calculating the Hückel c's and Energy Levels -- 4.4 The Extended Hückel Method -- 4.4.1 Theory -- 4.4.1.1 Simple Hückel Method -- 4.4.1.2 Extended Hückel Method -- 4.4.1.3 Review of the EHM Procedure -- 4.4.1.4 Molecular Energy and Geometry Optimization in the Extended Hückel Method -- 4.4.2 An Illustration of the EHM: The Protonated Helium Molecule -- 4.4.3 The Extended Hückel Method: Applications -- 4.4.4 Strengths and Weaknesses of the Extended Hückel Method -- 4.4.4.1 Strengths -- 4.4.4.2 Weaknesses.
4.5 Summary -- Easier Questions -- Harder Questions -- References -- Chapter 5: Ab Initio Calculations -- 5.1 Perspective -- 5.2 The Basic Principles of the Ab Initio Method -- 5.2.1 Preliminaries -- 5.2.2 The Hartree SCF (Self-consistent Field) Method -- 5.2.3 The Hartree-Fock Equations -- 5.2.3.1 Slater Determinants -- 5.2.3.2 Calculating the Atomic or Molecular Energy -- 5.2.3.3 The Variation Theorem (Variation Principle) -- 5.2.3.4 Minimizing the Energy: The Hartree-Fock Equations -- 5.2.3.5 The Meaning of the Hartree-Fock Equations -- 5.2.3.6 Basis Functions and the Roothaan-Hall Equations -- 5.2.3.6.1 Deriving the Roothaan-Hall Equations -- 5.2.3.6.2 Summary of the Derivation of the Roothaan-Hall Equations -- 5.2.3.6.3 Using the Roothaan-Hall Equations to Do Ab Initio Calculations: The SCF Procedure -- 5.2.3.6.4 Using the Roothaan-Hall Equations to Do Ab Initio Calculations: The Equations in Terms of the c's and φ's of the LCAO Expansion -- 5.2.3.6.5 Using the Roothaan-Hall Equations to Do Ab Initio Calculations: Some Details -- 5.2.3.6.6 Using the Roothaan-Hall Equations to Do Ab Initio Calculations: An Example -- 5.3 Basis Sets -- 5.3.1 Introduction -- 5.3.2 Gaussian Functions, Basis Set Preliminaries, and Direct SCF -- 5.3.3 Types of Basis Sets and Their Uses -- 5.3.3.1 STO-3G -- 5.3.3.2 3-21G and 3-21G* Split Valence and Double-Zeta Basis Sets -- 5.3.3.3 6-31G* -- 5.3.3.4 Diffuse Functions -- 5.3.3.5 Large Basis Sets -- 5.3.3.6 Correlation-Consistent Basis Sets -- 5.3.3.7 Effective Core Potentials (Pseudopotentials) -- 5.3.3.8 Which Basis Set Should I Use? -- 5.4 Post-Hartree-Fock Calculations: Electron Correlation -- 5.4.1 Electron Correlation -- 5.4.2 The Møller-Plesset Approach to Electron Correlation -- 5.4.3 The Configuration Interaction Approach to Electron Correlation -- 5.4.4 The Coupled Cluster Method.
5.4.5 Post-Hartree-Fock Methods: Size Consistency and Variational Behavior -- 5.5 Applications of the Ab Initio Method -- 5.5.1 Geometries -- 5.5.2 Energies -- 5.5.2.1 Energies: Preamble -- 5.5.2.2 Energies: Preliminaries -- 5.5.2.3 Energies: Calculating Quantities Relevant to Thermodynamics and to Kinetics -- 5.5.2.3.1 Thermodynamics, "Direct" Methods, and Isodesmic Reactions -- 5.5.2.3.2 Thermodynamics and High-Accuracy Calculations -- 5.5.2.3.3 Thermodynamics: Calculating Enthalpies of Formation -- 5.5.2.3.4 Kinetics: Calculating Reaction Rates -- 5.5.2.3.5 Energies: Concluding Remarks -- 5.5.3 Frequencies and Vibrational (IR) Spectra -- 5.5.4 Properties Arising from Electron Distribution: Dipole Moments, Charges, Bond Orders, Electrostatic Potentials, and Atoms-in-Molecules -- 5.5.4.1 Dipole Moments -- 5.5.4.2 Charges and Bond Orders -- 5.5.4.3 An Example of Population Analysis: H-He+ -- 5.5.4.4 Electrostatic Potential -- 5.5.4.5 Atoms-in-Molecules (AIM) and Quantum Theory of Atoms in Molecules (QTAIM) -- 5.5.5 Miscellaneous Properties: UV and NMR Spectra, Ionization Energies, and Electron Affinities -- 5.5.5.1 UV Spectra -- 5.5.5.2 NMR Spectra -- 5.5.5.3 Ionization Energies and Electron Affinities -- 5.5.6 Visualization -- 5.5.6.1 Molecular Vibrations: Visualization -- 5.5.6.2 Electrostatic Potential: Visualization -- 5.5.6.3 Molecular Orbitals: Visualization -- 5.5.6.4 Visualization: Closing Remarks -- 5.6 Strengths and Weaknesses of Ab Initio Calculations -- 5.6.1 Strengths -- 5.6.2 Weaknesses -- 5.7 Summary -- Easier Questions -- Harder Questions -- References -- Chapter 6: Semiempirical Calculations -- 6.1 Perspective -- 6.2 The Basic Principles of SCF Semiempirical Methods -- 6.2.1 Preliminaries -- 6.2.2 The Pariser-Parr-Pople (PPP) Method -- 6.2.3 The Complete Neglect of Differential Overlap (CNDO) Method.
6.2.4 The Intermediate Neglect of Differential Overlap (INDO) Method -- 6.2.5 The Neglect of Diatomic Differential Overlap (NDDO) Methods -- 6.2.5.1 NDDO-Based Methods from the Dewar Group: MNDO, AM1, PM3 and SAM1, and Related Methods: Preliminaries -- 6.2.5.2 Enthalpies of Formation (Heats of Formation) from Semiempirical Electronic Energies -- 6.2.5.3 MINDO -- 6.2.5.4 MNDO -- 6.2.5.5 AM1 -- 6.2.5.6 PM3 and Extensions (PM3(tm), PM5, PM6, and PM7) -- 6.2.5.7 Polarized Molecular Orbital Model, PMO -- Dispersion Effects -- 6.2.5.8 OMx, Orthogonalization Method x (x = 1, 2, 3) -- 6.2.5.8.1 General Comments on NDDO Methods -- 6.3 Applications of Semiempirical Methods -- 6.3.1 Geometries -- 6.3.2 Energies -- 6.3.2.1 Energies: Preliminaries -- 6.3.2.2 Energies: Calculating Quantities Relevant to Thermodynamics and Kinetics -- 6.3.3 Frequencies and Vibrational Spectra -- 6.3.4 Properties Arising from Electron Distribution: Dipole Moments, Charges, Bond Orders -- 6.3.4.1 Dipole Moments -- 6.3.4.2 Charges and Bond Orders -- 6.3.5 Miscellaneous Properties: UV Spectra, Ionization Energies, and Electron Affinities -- 6.3.5.1 UV Spectra -- 6.3.5.2 Ionization Energies and Electron Affinities -- 6.3.6 Visualization -- 6.3.7 Some General Remarks -- 6.4 Strengths and Weaknesses of Semiempirical Methods -- 6.4.1 Strengths -- 6.4.2 Weaknesses -- 6.5 Summary -- Easier Questions -- Harder Questions -- References -- Chapter 7: Density Functional Calculations -- 7.1 Perspective -- 7.2 The Basic Principles of Density Functional Theory -- 7.2.1 Preliminaries -- 7.2.2 Forerunners to Current DFT Methods -- 7.2.3 Current DFT Methods: The Kohn-Sham Approach -- 7.2.3.1 Functionals: The Hohenberg-Kohn Theorems -- 7.2.3.2 The Kohn-Sham Energy and the Kohn-Sham (KS) Equations -- 7.2.3.3 Solving the KS Equations.
7.2.3.4 The Exchange-Correlation Energy Functional: Various Levels of Kohn-Sham DFT.
Record Nr. UNINA-9910865285203321
Lewars Errol G  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Chemistry : Introduction to the Theory and Applications of Molecular and Quantum Mechanics / / by Errol G. Lewars
Computational Chemistry : Introduction to the Theory and Applications of Molecular and Quantum Mechanics / / by Errol G. Lewars
Autore Lewars Errol G
Edizione [3rd ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XVI, 728 p. 211 illus., 7 illus. in color.)
Disciplina 541.2
Soggetto topico Chemistry, Physical and theoretical
Chemometrics
Chemical engineering
Theoretical and Computational Chemistry
Math. Applications in Chemistry
Industrial Chemistry/Chemical Engineering
ISBN 3-319-30916-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. An Outline of What Computational Chemistry is All About -- 2. The Concept of the Potential Energy Surface -- 3. Molecular Mechanics -- 4. Introduction to Quantum Mechanics in Computational Chemistry -- 5. Ab Initio Calculations -- 6. Semiempirical Calculations -- 7. Density Functional Calculations -- 8. Some “Special” Topics -- 9. Selected Literature Highlights, Books, Websites, Software and Hardware -- Suggested Answers to Harder Questions -- Index.
Record Nr. UNINA-9910254044603321
Lewars Errol G  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui