A hierarchy of formulas in set theory / / by Azriel Lévy
| A hierarchy of formulas in set theory / / by Azriel Lévy |
| Autore | Levy Azriel |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
| Descrizione fisica | 1 online resource (79 p.) |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Set theory |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0003-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Â1. Introduction""; ""Â2. Definition of the hierarchy""; ""Â3. The relative hierarchy""; ""Â4. Formulas in Σ[sub(o)] and admissible terms""; ""Â5. The satisfaction predicates""; ""Â6. The semantical hierarchy theorem""; ""Â7. Undecidable sentences""; ""Â8. The syntactical hierarchy theorems""; ""Â9. Reflection phenomena""; ""Â10. The lower levels of the hierarchy""; ""Appendix A. The dependence of the results on the axiom of foundation""; ""Appendix B. The Boolean closure of Σ[sub(j)]""; ""Appendix C. Complete reflection in Ackermann's set theory""
""Appendix D. Equivalence of the Skolem-LÌ?wenheim theorem with the axiom of dependent choices""""Bibliography"" |
| Record Nr. | UNINA-9910480120403321 |
Levy Azriel
|
||
| Providence : , : American Mathematical Society, , 1965 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A hierarchy of formulas in set theory / / Azriel Lévy
| A hierarchy of formulas in set theory / / Azriel Lévy |
| Autore | Levy Azriel |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
| Descrizione fisica | 1 online resource (79 pages) |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Set theory |
| ISBN | 1-4704-0003-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Â1. Introduction""; ""Â2. Definition of the hierarchy""; ""Â3. The relative hierarchy""; ""Â4. Formulas in Σ[sub(o)] and admissible terms""; ""Â5. The satisfaction predicates""; ""Â6. The semantical hierarchy theorem""; ""Â7. Undecidable sentences""; ""Â8. The syntactical hierarchy theorems""; ""Â9. Reflection phenomena""; ""Â10. The lower levels of the hierarchy""; ""Appendix A. The dependence of the results on the axiom of foundation""; ""Appendix B. The Boolean closure of Σ[sub(j)]""; ""Appendix C. Complete reflection in Ackermann's set theory""
""Appendix D. Equivalence of the Skolem-LÌ?wenheim theorem with the axiom of dependent choices""""Bibliography"" |
| Record Nr. | UNINA-9910788601803321 |
Levy Azriel
|
||
| Providence : , : American Mathematical Society, , 1965 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A hierarchy of formulas in set theory / / Azriel Lévy
| A hierarchy of formulas in set theory / / Azriel Lévy |
| Autore | Levy Azriel |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
| Descrizione fisica | 1 online resource (79 pages) |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Set theory |
| ISBN | 1-4704-0003-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Â1. Introduction""; ""Â2. Definition of the hierarchy""; ""Â3. The relative hierarchy""; ""Â4. Formulas in Σ[sub(o)] and admissible terms""; ""Â5. The satisfaction predicates""; ""Â6. The semantical hierarchy theorem""; ""Â7. Undecidable sentences""; ""Â8. The syntactical hierarchy theorems""; ""Â9. Reflection phenomena""; ""Â10. The lower levels of the hierarchy""; ""Appendix A. The dependence of the results on the axiom of foundation""; ""Appendix B. The Boolean closure of Σ[sub(j)]""; ""Appendix C. Complete reflection in Ackermann's set theory""
""Appendix D. Equivalence of the Skolem-LÌ?wenheim theorem with the axiom of dependent choices""""Bibliography"" |
| Record Nr. | UNINA-9910812541603321 |
Levy Azriel
|
||
| Providence : , : American Mathematical Society, , 1965 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||