Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky |
Autore | Levin A. L. <1944-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (166 p.) |
Disciplina | 515/.55 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Orthogonal polynomials
Christoffel-Darboux formula Convergence |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0114-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1"" ""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2"" ""Lemma 11.5: An Estimate for I[sub(3)]"" |
Record Nr. | UNINA-9910480612003321 |
Levin A. L. <1944-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky |
Autore | Levin A. L. <1944-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (166 p.) |
Disciplina | 515/.55 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Orthogonal polynomials
Christoffel-Darboux formula Convergence |
ISBN | 1-4704-0114-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1"" ""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2"" ""Lemma 11.5: An Estimate for I[sub(3)]"" |
Record Nr. | UNINA-9910788755403321 |
Levin A. L. <1944-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky |
Autore | Levin A. L. <1944-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (166 p.) |
Disciplina | 515/.55 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Orthogonal polynomials
Christoffel-Darboux formula Convergence |
ISBN | 1-4704-0114-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1"" ""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2"" ""Lemma 11.5: An Estimate for I[sub(3)]"" |
Record Nr. | UNINA-9910806186303321 |
Levin A. L. <1944-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|