Algebra teaching around the world / / edited by Frederick K. S. Leung, [and others] |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Rotterdam, The Netherlands : , : Sense Publishers, , 2014 |
Descrizione fisica | 1 online resource (266 p.) |
Disciplina | 372.7 |
Collana | The Learner's Perspective Study |
Soggetto topico | Algebra - Study and teaching |
ISBN | 94-6209-707-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preliminary Material / Frederick K.S. Leung , Kyungmee Park , Derek Holton and David Clarke -- How is Algebra Taught around the World? / Frederick K.S. Leung , David Clarke , Derek Holton and Kyungmee Park -- Solving Linear Equations: A Balanced Approach / Glenda Anthony and Tim Burgess -- Rethinking Algebra Teaching in the Light of ‘Orchestration of Signs’ – Exploring the “Equal Sign” in a Norwegian Mathematics Classroom / Birgit Pepin , Ole Kristian Bergem and Kirsti Klette -- Traditional Versus Investigative Approaches to Teaching Algebra at the Lower Secondary Level: The Case of Equations / Jarmila Novotná and Alena Hošpesová -- Developing Procedural Fluency in Algebraic Structures – A Case Study of a Mathematics Classroom in Singapore / Berinderjeet Kaur -- Eye of the Beholder: The Discrepancy between the Teacher’s Perspectives and Students’ Perspectives on Algebra Lessons in Korea / Kyungmee Park and Frederick K. S. Leung -- Construction Zone for the Understanding of Simultaneous Equations: An Analysis of One Japanese Teacher’s Strategy of Reflecting on a Task in a Lesson Sequence / Minoru Ohtani -- Understanding the Concept of Variable Through Whole-Class Discussions: The Community of Inquiry from a Japanese Perspective / Toshiakira Fujii -- Understanding the Current Beijing Classrooms Through Linear Inequalities Teaching / Zhongdan Huan , Jianhua Li , Ping Ma and Li Fu -- Teaching the Graphical Method of Solving Equations: An Example in the Shanghai Lessons / Ida Ah Chee Mok -- Teaching Algebraic Concepts in Chinese Classrooms: A Case Study of Systems of Linear Equations / Rongjin Huang , Ida Ah Chee Mok and Frederick K. S. Leung -- Promoting Mathematical Understanding: An Examination of Algebra Instruction in Chinese and U.S. Classrooms / Rongjin Huang and Yeping Li -- Different Opportunities to Learn: The Case of Simultaneous Equations / Johan Häggström -- The LPS Research Design / David Clarke -- Subject Index / Frederick K.S. Leung , Kyungmee Park , Derek Holton and David Clarke. |
Record Nr. | UNINA-9910460229503321 |
Rotterdam, The Netherlands : , : Sense Publishers, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical modelling education in East and West / / Frederick Koon Shing Leung [and three others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (649 pages) |
Disciplina | 510.712 |
Collana | International perspectives on the teaching and learning of mathematical modelling |
Soggetto topico |
Mathematical models - Study and teaching (Secondary)
Models matemàtics Ensenyament de la matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-66996-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Series Preface -- Contents -- Contributors -- Part I Introduction -- 1 Mathematical Modelling Education in the Cultural Contexts of West and East -- 1.1 Introduction -- 1.2 Theoretical Issues -- 1.3 Pedagogical Issues -- 1.4 Assessment Issues -- 1.5 Teaching Practice -- 1.6 Innovative Teaching Approaches -- 1.7 Examples on Mathematical Modelling -- 1.8 Issues at Tertiary Level -- 1.9 Other Subjects -- References -- Part II Theoretical Issues -- 2 Computational Thinking and Mathematical Modelling -- 2.1 Introduction -- 2.2 Computational Thinking -- 2.2.1 Habits Developed Through Coding Exercises -- 2.3 Examples -- 2.3.1 Example 1: From Data to Model -- 2.3.2 Example 2: From Processes to Model -- 2.3.3 Example 3: From Decisions to Model -- 2.4 Discussion -- 2.5 Conclusion -- References -- 3 Global Understanding of Complex Systems Problems Can Start in Pre-college Education -- 3.1 Introduction -- 3.2 Introduction to the SD Software -- 3.3 A Basic Deer Population Model -- 3.4 A More Realistic Deer Population Model -- 3.5 Modeling a Real-World Scenario -- 3.6 Can We Sustain the Reindeer Population? -- 3.7 Discussion -- 3.8 Conclusion -- References -- 4 Theorizing 'Modelling as Bridge' Between Content and Vehicle -- 4.1 Introduction -- 4.2 Background Literature -- 4.2.1 Teaching Mathematical Modelling -- 4.3 Methods -- 4.4 Results -- 4.5 Discussion and Conclusions -- References -- 5 Glocalization of Cultural Mathematical Practices Through Ethnomodelling -- 5.1 Initial Considerations -- 5.2 Developing Three Cultural Approaches to Ethnomodelling -- 5.3 Tree Trunk Cubing: An Example of a Glocal Ethnomodel -- 5.4 Final Considerations -- References -- 6 Positive Deviance in the Pedagogical Action of Ethnomodelling -- 6.1 Initial Remarks -- 6.2 Aspects of Positive Deviance in Ethnomodelling Research.
6.3 Land Demarcation: An Example of a Positive Deviance Ethnomodel -- 6.4 Final Remarks -- References -- 7 Models-and-Modelling Perspective Through the Eyes of Jean Piaget -- 7.1 Introduction -- 7.2 Methods -- 7.3 Piagetian Roots of the Models-and-Modelling Perspective -- 7.3.1 Modelling as a Series of Assimilations and Accommodations -- 7.3.2 Modelling Involves Social Interaction as Well as Cognition -- 7.4 Conclusion -- References -- Part III Pedagogical Issues -- 8 Influence of Social Background on Mathematical Modelling-The DiMo+ Project -- 8.1 Introduction -- 8.2 Theoretical Background -- 8.2.1 ESCS-Index for Economic, Social and Cultural Status -- 8.2.2 Mathematical Modelling -- 8.3 Design and Method -- 8.4 Results -- 8.4.1 Determining the ESCS -- 8.4.2 Video Analysis -- 8.5 Discussion and Conclusion -- References -- 9 Mandatory Mathematical Modelling in School: What Do We Want the Teachers to Know? -- 9.1 Introduction -- 9.2 Historical Overview-Teacher Education in Mathematical Modelling -- 9.3 Teaching Competencies for Mathematical Modelling and Their Measurement -- 9.4 Views of the Educators of the Educators for Teaching Modelling -- 9.5 Summary and Outlook -- References -- 10 Analysis of the Relationship Between Context and Solution Plan in Modelling Tasks Involving Estimations -- 10.1 Introduction -- 10.2 Theoretical Framework -- 10.3 Method -- 10.3.1 Sample -- 10.3.2 Procedure and Tasks -- 10.3.3 Data Analysis -- 10.4 Results -- 10.5 Discussion and Conclusions -- References -- 11 Generating a Design and Implementation Framework for Mathematical Modelling Tasks Through Researcher-Teacher Collaboration -- 11.1 Introduction -- 11.2 The Nature of Mathematical Modelling -- 11.3 Anticipatory Metacognition -- 11.4 Anticipation and Modelling -- 11.5 Enablers of Implemented Anticipation -- 11.6 Approach to Developing the DIFMT -- 11.7 The DIFMT. 11.8 Emergent Enablers -- 11.8.1 Core Teaching Enabler: Utilising the Modelling Process -- 11.8.2 Learning/Teaching Environment -- 11.8.3 Teacher Anticipatory Capability -- 11.9 Conclusion -- References -- 12 Pre-service Mathematics Teachers' Technological Pedagogical Content Knowledge: The Case of Modelling -- 12.1 Introduction -- 12.2 Modelling, Technology, and Teacher Knowledge -- 12.3 Method and Context -- 12.4 Analysis of Task Design -- 12.4.1 Elements of TPACK Emerging in Task Design -- 12.5 Discussion and Conclusion -- References -- 13 Interest and Emotions While Solving Real-World Problems Inside and Outside the Classroom -- 13.1 Introduction -- 13.2 Theoretical Background -- 13.2.1 Interest, Enjoyment, and Boredom -- 13.2.2 Real-World Problems in the Context of a Math Trail -- 13.2.3 Research Questions -- 13.3 Methodology -- 13.3.1 Participants and Procedure -- 13.3.2 Measures -- 13.3.3 Data Analysis -- 13.4 Results -- 13.4.1 Task-Specific Interest -- 13.4.2 Enjoyment and Boredom -- 13.5 Discussion -- 13.5.1 Task-Specific Interest -- 13.5.2 Enjoyment and Boredom -- 13.6 Strengths and Limitations -- 13.7 Conclusion and Summary -- References -- 14 Learners Developing Understanding of Fractions via Modelling -- 14.1 Introduction -- 14.2 Fractions -- 14.3 Modelling and Fractions as an Operator -- 14.4 The Study -- 14.4.1 Data Collection -- 14.4.2 Results and Analysis -- 14.4.3 Analysis -- 14.5 Discussion -- 14.6 Conclusion -- References -- 15 The Historical Development of Mathematical Modelling in Mathematics Curricular Standards/Syllabi in China -- 15.1 Theory -- 15.1.1 Different Perspectives on Mathematical Modelling -- 15.1.2 Mathematical Modelling of Curricular Standards in Different Countries -- 15.2 Method -- 15.2.1 Research Objects -- 15.2.2 Qualitative Text Analysis -- 15.3 Results -- 15.3.1 Evolution of Mathematical Modelling. 15.3.2 Requirements of Mathematical Modelling -- 15.4 Discussion -- References -- 16 Pictures in Modelling Problems: Does Numerical Information Make a Difference? -- 16.1 Introduction -- 16.2 Theoretical Framework -- 16.2.1 Pictures in Modelling Problems -- 16.2.2 Text and Picture Comprehension -- 16.2.3 Picture-Specific Utility Value -- 16.2.4 Research Questions -- 16.3 Method -- 16.3.1 Design -- 16.3.2 Utility Value -- 16.3.3 Modelling Performance -- 16.4 Results -- 16.4.1 Picture-Specific Utility Value -- 16.4.2 Modelling Performance -- 16.5 Discussion -- 16.5.1 Additional Useful Numerical Information -- 16.5.2 Additional Superfluous Numerical Information -- 16.5.3 Overall Discussion and Implications -- References -- Part IV Assessment Issues -- 17 Validity of Mathematical Modelling Assessments for Interdisciplinary Learning -- 17.1 Introduction -- 17.2 Problem and Background -- 17.3 Theoretical Framework -- 17.3.1 Argument-Based Approach to Validity -- 17.4 Method and Data -- 17.4.1 Setting and Participants -- 17.5 Results -- 17.5.1 Scoring Inferences -- 17.5.2 Inferences of Score Uses: Consequential Validity -- 17.5.3 Theory-Based Inferences: Construct Validity -- 17.5.4 Generalization and Extrapolation -- 17.6 Discussion -- 17.7 Conclusions -- 17.7.1 Future Directions -- References -- 18 Measuring Students' Metacognitive Knowledge of Mathematical Modelling -- 18.1 Introduction -- 18.2 Theoretical Background -- 18.2.1 Metacognitive Knowledge -- 18.2.2 Metacognitive Knowledge of Mathematical Modelling -- 18.3 Method -- 18.3.1 Item Construction and Data Collection -- 18.3.2 Item Examples -- 18.4 Results of the Quantitative Analysis -- 18.5 Summary and Discussion -- References -- 19 Mathematical Modelling in Dutch Lower Secondary Education: An Explorative Study Zooming in on Conceptualization -- 19.1 Introduction -- 19.2 Method. 19.2.1 Participants -- 19.2.2 Modelling Tasks -- 19.2.3 Mathematical Core Assignment -- 19.2.4 Task-Based Interview -- 19.2.5 Procedure -- 19.2.6 Analysis -- 19.3 Results -- 19.3.1 Results of the Modelling Tasks -- 19.3.2 Results of the Task-Based Interviews -- 19.4 Conclusion and Discussion -- References -- 20 Investigation of the Mathematics Modelling Competency of Mathematics Undergraduate Student Teachers -- 20.1 Introduction -- 20.2 Theoretical Framework -- 20.3 Study Design -- 20.3.1 Task Design -- 20.3.2 Sample -- 20.3.3 Test Analysis -- 20.4 Results -- 20.4.1 Performance of the Student Teachers -- 20.4.2 University and Gender Differences -- 20.4.3 Correlation Between Modelling Step Reached and Modelling Competition Experience -- 20.5 Conclusions and Outlook -- References -- 21 Measuring Professional Competence for the Teaching of Mathematical Modelling -- 21.1 Introduction -- 21.2 Theoretical Frame -- 21.2.1 Professional Knowledge -- 21.2.2 Beliefs -- 21.2.3 Self-Efficacy -- 21.3 Empirical Validation of the Structural Model -- 21.4 Results -- 21.5 Discussion -- 21.6 Conclusion and Outlook -- References -- Part V Teaching Practice -- 22 Attending to Quantities Through the Modelling Space -- 22.1 Introduction -- 22.2 Relevant Theoretical Constructs -- 22.3 Methodology -- 22.4 Theory-Building Case Presentation and Analysis -- 22.5 Implications -- References -- 23 Characteristic Elements Influencing the Practices of Mathematics Teachers Developing the Modelling Process in Ninth Grade -- 23.1 Introduction -- 23.2 Onto-Semiotic Approach: Didactic Suitability -- 23.2.1 Epistemic Aspects of Mathematical Modelling -- 23.2.2 Didactical Suitability Criteria for Mathematical Modelling -- 23.3 The Study -- 23.4 Analysis and Discussion of Responses -- 23.4.1 Epistemic Category -- 23.4.2 Didactic Category -- 23.5 Conclusion -- References. 24 Pre-service Teachers' Facilitations for Pupils' Independency in Modelling Processes. |
Record Nr. | UNINA-9910483205503321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|