An introduction to audio content analysis : music information retrieval tasks and applications / / Alexander Lerch |
Autore | Lerch Alexander |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE Press, , 2023 |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 006.45 |
Soggetto topico |
Computational auditory scene analysis
Computer sound processing Content analysis (Communication) - Data processing |
ISBN |
1-119-89098-5
1-119-89096-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910829842403321 |
Lerch Alexander | ||
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An Introduction to Audio Content Analysis : Music Information Retrieval Tasks and Applications |
Autore | Lerch Alexander |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (467 pages) |
ISBN |
1-119-89098-5
1-119-89096-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910632492703321 |
Lerch Alexander | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to audio content analysis : applications in signal processing and music informatics / / Alexander Lerch |
Autore | Lerch Alexander |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2012 |
Descrizione fisica | 1 online resource (272 p.) |
Disciplina |
006.45
621.3822 |
Soggetto topico |
Computer sound processing
Computational auditory scene analysis Content analysis (Communication) - Data processing |
ISBN |
1-283-80405-0
1-118-39350-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Machine generated contents note: 1.1.Audio Content -- 1.2.A Generalized Audio Content Analysis System -- 2.1.Audio Signals -- 2.1.1.Periodic Signals -- 2.1.2.Random Signals -- 2.1.3.Sampling and Quantization -- 2.1.4.Statistical Signal Description -- 2.2.Signal Processing -- 2.2.1.Convolution -- 2.2.2.Block-Based Processing -- 2.2.3.Fourier Transform -- 2.2.4.Constant Q Transform -- 2.2.5.Auditory Filterbanks -- 2.2.6.Correlation Function -- 2.2.7.Linear Prediction -- 3.1.Audio Pre-Processing -- 3.1.1.Down-Mixing -- 3.1.2.DC Removal -- 3.1.3.Normalization -- 3.1.4.Down-Sampling -- 3.1.5.Other Pre-Processing Options -- 3.2.Statistical Properties -- 3.2.1.Arithmetic Mean -- 3.2.2.Geometric Mean -- 3.2.3.Harmonic Mean -- 3.2.4.Generalized Mean -- 3.2.5.Centroid -- 3.2.6.Variance and Standard Deviation -- 3.2.7.Skewness -- 3.2.8.Kurtosis -- 3.2.9.Generalized Central Moments -- 3.2.10.Quantiles and Quantile Ranges -- 3.3.Spectral Shape -- 3.3.1.Spectral Rolloff --
Contents note continued: 3.3.2.Spectral Flux -- 3.3.3.Spectral Centroid -- 3.3.4.Spectral Spread -- 3.3.5.Spectral Decrease -- 3.3.6.Spectral Slope -- 3.3.7.Mel Frequency Cepstral Coefficients -- 3.4.Signal Properties -- 3.4.1.Tonalness -- 3.4.2.Autocorrelation Coefficients -- 3.4.3.Zero Crossing Rate -- 3.5.Feature Post-Processing -- 3.5.1.Derived Features -- 3.5.2.Normalization and Mapping -- 3.5.3.Subfeatures -- 3.5.4.Feature Dimensionality Reduction -- 4.1.Human Perception of Intensity and Loudness -- 4.2.Representation of Dynamics in Music -- 4.3.Features -- 4.3.1.Root Mean Square -- 4.4.Peak Envelope -- 4.5.Psycho-Acoustic Loudness Features -- 4.5.1.EBU R128 -- 5.1.Human Perception of Pitch -- 5.1.1.Pitch Scales -- 5.1.2.Chroma Perception -- 5.2.Representation of Pitch in Music -- 5.2.1.Pitch Classes and Names -- 5.2.2.Intervals -- 5.2.3.Root Note, Mode, and Key -- 5.2.4.Chords and Harmony -- 5.2.5.The Frequency of Musical Pitch -- 5.3.Fundamental Frequency Detection -- Contents note continued: 5.3.1.Detection Accuracy -- 5.3.2.Pre-Processing -- 5.3.3.Monophonic Input Signals -- 5.3.4.Polyphonic Input Signals -- 5.4.Tuning Frequency Estimation -- 5.5.Key Detection -- 5.5.1.Pitch Chroma -- 5.5.2.Key Recognition -- 5.6.Chord Recognition -- 6.1.Human Perception of Temporal Events -- 6.1.1.Onsets -- 6.1.2.Tempo and Meter -- 6.1.3.Rhythm -- 6.1.4.Timing -- 6.2.Representation of Temporal Events in Music -- 6.2.1.Tempo and Time Signature -- 6.2.2.Note Value -- 6.3.Onset Detection -- 6.3.1.Novelty Function -- 6.3.2.Peak Picking -- 6.3.3.Evaluation -- 6.4.Beat Histogram -- 6.4.1.Beat Histogram Features -- 6.5.Detection of Tempo and Beat Phase -- 6.6.Detection of Meter and Downbeat -- 7.1.Dynamic Time Warping -- 7.1.1.Example -- 7.1.2.Common Variants -- 7.1.3.Optimizations -- 7.2.Audio-to-Audio Alignment -- 7.2.1.Ground Truth Data for Evaluation -- 7.3.Audio-to-Score Alignment -- 7.3.1.Real-Time Systems M -- 7.3.2.Non-Real-Time Systems -- Contents note continued: 8.1.Musical Genre Classification -- 8.1.1.Musical Genre -- 8.1.2.Feature Extraction -- 8.1.3.Classification -- 8.2.Related Research Fields -- 8.2.1.Music Similarity Detection -- 8.2.2.Mood Classification -- 8.2.3.Instrument Recognition -- 9.1.Fingerprint Extraction -- 9.2.Fingerprint Matching -- 9.3.Fingerprinting System: Example -- 10.1.Musical Communication -- 10.1.1.Score -- 10.1.2.Music Performance -- 10.1.3.Production -- 10.1.4.Recipient -- 10.2.Music Performance Analysis -- 10.2.1.Analysis Data -- 10.2.2.Research Results -- A.1.Identity -- A.2.Commutativity -- A.3.Associativity -- A.4.Distributivity -- A.5.Circularity -- B.1.Properties of the Fourier Transformation -- B.1.1.Inverse Fourier Transform -- B.1.2.Superposition -- B.1.3.Convolution and Multiplication -- B.1.4.Parseval's Theorem -- B.1.5.Time and Frequency Shift -- B.1.6.Symmetry -- B.1.7.Time and Frequency Scaling -- B.1.8.Derivatives -- B.2.Spectrum of Example Time Domain Signals -- Contents note continued: B.2.1.Delta Function -- B.2.2.Constant -- B.2.3.Cosine -- B.2.4.Rectangular Window -- B.2.5.Delta Pulse -- B.3.Transformation of Sampled Time Signals -- B.4.Short Time Fourier Transform of Continuous Signals -- B.4.1.Window Functions -- B.5.Discrete Fourier Transform -- B.5.1.Window Functions -- B.5.2.Fast Fourier Transform -- C.1.Computation of the Transformation Matrix -- C.2.Interpretation of the Transformation Matrix -- D.1.Software Frameworks and Applications -- D.1.1.Marsyas -- D.1.2.CLAM -- D.1.3.jMIR -- D.1.4.CoMIRVA -- D.1.5.Sonic Visualiser -- D.2.Software Libraries and Toolboxes -- D.2.1.Feature Extraction -- D.2.2.Plugin Interfaces -- D.2.3.Other Software. |
Record Nr. | UNINA-9910141368403321 |
Lerch Alexander | ||
Hoboken, New Jersey : , : Wiley, , c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to audio content analysis : applications in signal processing and music informatics / / Alexander Lerch |
Autore | Lerch Alexander |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2012 |
Descrizione fisica | 1 online resource (272 p.) |
Disciplina |
006.45
621.3822 |
Soggetto topico |
Computer sound processing
Computational auditory scene analysis Content analysis (Communication) - Data processing |
ISBN |
1-283-80405-0
1-118-39350-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Machine generated contents note: 1.1.Audio Content -- 1.2.A Generalized Audio Content Analysis System -- 2.1.Audio Signals -- 2.1.1.Periodic Signals -- 2.1.2.Random Signals -- 2.1.3.Sampling and Quantization -- 2.1.4.Statistical Signal Description -- 2.2.Signal Processing -- 2.2.1.Convolution -- 2.2.2.Block-Based Processing -- 2.2.3.Fourier Transform -- 2.2.4.Constant Q Transform -- 2.2.5.Auditory Filterbanks -- 2.2.6.Correlation Function -- 2.2.7.Linear Prediction -- 3.1.Audio Pre-Processing -- 3.1.1.Down-Mixing -- 3.1.2.DC Removal -- 3.1.3.Normalization -- 3.1.4.Down-Sampling -- 3.1.5.Other Pre-Processing Options -- 3.2.Statistical Properties -- 3.2.1.Arithmetic Mean -- 3.2.2.Geometric Mean -- 3.2.3.Harmonic Mean -- 3.2.4.Generalized Mean -- 3.2.5.Centroid -- 3.2.6.Variance and Standard Deviation -- 3.2.7.Skewness -- 3.2.8.Kurtosis -- 3.2.9.Generalized Central Moments -- 3.2.10.Quantiles and Quantile Ranges -- 3.3.Spectral Shape -- 3.3.1.Spectral Rolloff --
Contents note continued: 3.3.2.Spectral Flux -- 3.3.3.Spectral Centroid -- 3.3.4.Spectral Spread -- 3.3.5.Spectral Decrease -- 3.3.6.Spectral Slope -- 3.3.7.Mel Frequency Cepstral Coefficients -- 3.4.Signal Properties -- 3.4.1.Tonalness -- 3.4.2.Autocorrelation Coefficients -- 3.4.3.Zero Crossing Rate -- 3.5.Feature Post-Processing -- 3.5.1.Derived Features -- 3.5.2.Normalization and Mapping -- 3.5.3.Subfeatures -- 3.5.4.Feature Dimensionality Reduction -- 4.1.Human Perception of Intensity and Loudness -- 4.2.Representation of Dynamics in Music -- 4.3.Features -- 4.3.1.Root Mean Square -- 4.4.Peak Envelope -- 4.5.Psycho-Acoustic Loudness Features -- 4.5.1.EBU R128 -- 5.1.Human Perception of Pitch -- 5.1.1.Pitch Scales -- 5.1.2.Chroma Perception -- 5.2.Representation of Pitch in Music -- 5.2.1.Pitch Classes and Names -- 5.2.2.Intervals -- 5.2.3.Root Note, Mode, and Key -- 5.2.4.Chords and Harmony -- 5.2.5.The Frequency of Musical Pitch -- 5.3.Fundamental Frequency Detection -- Contents note continued: 5.3.1.Detection Accuracy -- 5.3.2.Pre-Processing -- 5.3.3.Monophonic Input Signals -- 5.3.4.Polyphonic Input Signals -- 5.4.Tuning Frequency Estimation -- 5.5.Key Detection -- 5.5.1.Pitch Chroma -- 5.5.2.Key Recognition -- 5.6.Chord Recognition -- 6.1.Human Perception of Temporal Events -- 6.1.1.Onsets -- 6.1.2.Tempo and Meter -- 6.1.3.Rhythm -- 6.1.4.Timing -- 6.2.Representation of Temporal Events in Music -- 6.2.1.Tempo and Time Signature -- 6.2.2.Note Value -- 6.3.Onset Detection -- 6.3.1.Novelty Function -- 6.3.2.Peak Picking -- 6.3.3.Evaluation -- 6.4.Beat Histogram -- 6.4.1.Beat Histogram Features -- 6.5.Detection of Tempo and Beat Phase -- 6.6.Detection of Meter and Downbeat -- 7.1.Dynamic Time Warping -- 7.1.1.Example -- 7.1.2.Common Variants -- 7.1.3.Optimizations -- 7.2.Audio-to-Audio Alignment -- 7.2.1.Ground Truth Data for Evaluation -- 7.3.Audio-to-Score Alignment -- 7.3.1.Real-Time Systems M -- 7.3.2.Non-Real-Time Systems -- Contents note continued: 8.1.Musical Genre Classification -- 8.1.1.Musical Genre -- 8.1.2.Feature Extraction -- 8.1.3.Classification -- 8.2.Related Research Fields -- 8.2.1.Music Similarity Detection -- 8.2.2.Mood Classification -- 8.2.3.Instrument Recognition -- 9.1.Fingerprint Extraction -- 9.2.Fingerprint Matching -- 9.3.Fingerprinting System: Example -- 10.1.Musical Communication -- 10.1.1.Score -- 10.1.2.Music Performance -- 10.1.3.Production -- 10.1.4.Recipient -- 10.2.Music Performance Analysis -- 10.2.1.Analysis Data -- 10.2.2.Research Results -- A.1.Identity -- A.2.Commutativity -- A.3.Associativity -- A.4.Distributivity -- A.5.Circularity -- B.1.Properties of the Fourier Transformation -- B.1.1.Inverse Fourier Transform -- B.1.2.Superposition -- B.1.3.Convolution and Multiplication -- B.1.4.Parseval's Theorem -- B.1.5.Time and Frequency Shift -- B.1.6.Symmetry -- B.1.7.Time and Frequency Scaling -- B.1.8.Derivatives -- B.2.Spectrum of Example Time Domain Signals -- Contents note continued: B.2.1.Delta Function -- B.2.2.Constant -- B.2.3.Cosine -- B.2.4.Rectangular Window -- B.2.5.Delta Pulse -- B.3.Transformation of Sampled Time Signals -- B.4.Short Time Fourier Transform of Continuous Signals -- B.4.1.Window Functions -- B.5.Discrete Fourier Transform -- B.5.1.Window Functions -- B.5.2.Fast Fourier Transform -- C.1.Computation of the Transformation Matrix -- C.2.Interpretation of the Transformation Matrix -- D.1.Software Frameworks and Applications -- D.1.1.Marsyas -- D.1.2.CLAM -- D.1.3.jMIR -- D.1.4.CoMIRVA -- D.1.5.Sonic Visualiser -- D.2.Software Libraries and Toolboxes -- D.2.1.Feature Extraction -- D.2.2.Plugin Interfaces -- D.2.3.Other Software. |
Record Nr. | UNINA-9910830665403321 |
Lerch Alexander | ||
Hoboken, New Jersey : , : Wiley, , c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|