Piezoelectric ZnO nanostructure for energy harvesting / / Yamin Leprince-Wang
| Piezoelectric ZnO nanostructure for energy harvesting / / Yamin Leprince-Wang |
| Autore | Leprince-Wang Yamin |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : iSTE/Wiley, , 2015 |
| Descrizione fisica | 1 online resource (148 p.) |
| Disciplina | 620.10923489 |
| Collana | Nanoscience and nanotechnology series. Nanotechnologies for energy recovery set |
| Soggetto topico |
Piezoelectric devices
Piezoelectricity |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-00744-5
1-119-00742-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Introduction; 1: Properties of ZnO; 1.1. Crystal structure of ZnO; 1.2. Electrical properties of ZnO and Schottky junction ZnO/Au; 1.3. Optical properties of ZnO; 1.4. Piezoelectricity of ZnO; 2: ZnO Nanostructure Synthesis; 2.1. Electrochemical deposition for ZnO nanostructure; 2.1.1. Electrodeposition of monocrystalline ZnO nanowires and nanorods via template method; 2.1.1.1. Individual nanowire growth; 2.1.1.2. Nanopillar array growth; 2.1.2. ZnO nanowire array growth via electrochemical road
2.2. Hydrothermal method for ZnO nanowire array growth2.3. Comparative discussion on ZnO nanowire arrays obtained via electrodeposition and hydrothermal method; 2.4. Influence of main parameters of hydrothermal method on ZnO nanowire growth morphology; 2.4.1. Effect of the growth method; 2.4.2. Effect of the growth solution pH value; 2.4.3. Effect of the growth temperature; 2.4.4. Effect of the growth time; 2.5. Electrospinning method for ZnO micro/nanofiber synthesis; 3: Modeling and Simulation of ZnO-Nanowire-Based Energy Harvesting; 3.1. Nanowire in bending mode 3.1.1. Influence of the nanowire length3.1.2. Influence of the nanowire diameter; 3.1.3. Influence of the aspect ratio; 3.2. Nanowire in compression mode; 3.2.1. Influence of the nanowire length; 3.2.2. Influence of the nanowire diameter; 3.2.3. Influence of the aspect ratio; 3.3. Nanowire arrays in static and vibrational responses; 3.3.1. Nanowire arrays in static and compressive responses; 3.3.2. Nanowire arrays in periodic vibrational response; 4: ZnO-Nanowire-Based Nanogenerators: Principle, Characterization and Device Fabrication; 4.1. Working principle of nanogenerators 4.2. ZnO-nanowire-based energy harvesting device fabrication4.3. ZnO-nanowire-based energy harvesting device characterization; 4.4. ZnO-nanostructure-based hybrid nanogenerators; Conclusion; Bibliography; Index |
| Record Nr. | UNINA-9910131321103321 |
Leprince-Wang Yamin
|
||
| Hoboken, New Jersey : , : iSTE/Wiley, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Piezoelectric ZnO nanostructure for energy harvesting / / Yamin Leprince-Wang
| Piezoelectric ZnO nanostructure for energy harvesting / / Yamin Leprince-Wang |
| Autore | Leprince-Wang Yamin |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : iSTE/Wiley, , 2015 |
| Descrizione fisica | 1 online resource (148 p.) |
| Disciplina | 620.10923489 |
| Collana | Nanoscience and nanotechnology series. Nanotechnologies for energy recovery set |
| Soggetto topico |
Piezoelectric devices
Piezoelectricity |
| ISBN |
1-119-00744-5
1-119-00742-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Introduction; 1: Properties of ZnO; 1.1. Crystal structure of ZnO; 1.2. Electrical properties of ZnO and Schottky junction ZnO/Au; 1.3. Optical properties of ZnO; 1.4. Piezoelectricity of ZnO; 2: ZnO Nanostructure Synthesis; 2.1. Electrochemical deposition for ZnO nanostructure; 2.1.1. Electrodeposition of monocrystalline ZnO nanowires and nanorods via template method; 2.1.1.1. Individual nanowire growth; 2.1.1.2. Nanopillar array growth; 2.1.2. ZnO nanowire array growth via electrochemical road
2.2. Hydrothermal method for ZnO nanowire array growth2.3. Comparative discussion on ZnO nanowire arrays obtained via electrodeposition and hydrothermal method; 2.4. Influence of main parameters of hydrothermal method on ZnO nanowire growth morphology; 2.4.1. Effect of the growth method; 2.4.2. Effect of the growth solution pH value; 2.4.3. Effect of the growth temperature; 2.4.4. Effect of the growth time; 2.5. Electrospinning method for ZnO micro/nanofiber synthesis; 3: Modeling and Simulation of ZnO-Nanowire-Based Energy Harvesting; 3.1. Nanowire in bending mode 3.1.1. Influence of the nanowire length3.1.2. Influence of the nanowire diameter; 3.1.3. Influence of the aspect ratio; 3.2. Nanowire in compression mode; 3.2.1. Influence of the nanowire length; 3.2.2. Influence of the nanowire diameter; 3.2.3. Influence of the aspect ratio; 3.3. Nanowire arrays in static and vibrational responses; 3.3.1. Nanowire arrays in static and compressive responses; 3.3.2. Nanowire arrays in periodic vibrational response; 4: ZnO-Nanowire-Based Nanogenerators: Principle, Characterization and Device Fabrication; 4.1. Working principle of nanogenerators 4.2. ZnO-nanowire-based energy harvesting device fabrication4.3. ZnO-nanowire-based energy harvesting device characterization; 4.4. ZnO-nanostructure-based hybrid nanogenerators; Conclusion; Bibliography; Index |
| Record Nr. | UNINA-9910830359203321 |
Leprince-Wang Yamin
|
||
| Hoboken, New Jersey : , : iSTE/Wiley, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||