Algal Systems for Resource Recovery from Waste and Wastewater
| Algal Systems for Resource Recovery from Waste and Wastewater |
| Autore | Lens Piet |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
| Descrizione fisica | 1 online resource (266 pages) |
| Disciplina | 628.35 |
| Altri autori (Persone) | KhandelwalAmitap |
| Collana | Integrated Environmental Technology Series |
| Soggetto topico |
Land treatment of wastewater
Resource recovery facilities |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 : Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 : Metabolic modelling of microalgae for wastewater treatment -- 2.1 Introduction -- 2.2 Main Metabolic Pathways -- 2.2.1 Photosynthesis -- 2.2.2 Glycolysis and pentose phosphate pathway -- 2.2.3 Tricarboxylic acid cycle -- 2.2.4 Glyoxylate shunt -- 2.2.5 Lipid biosynthesis -- 2.3 Genome-Scale Metabolic Models -- 2.4 Modelling Metabolic Networks -- 2.5 Tools for Steady-State Conditions -- 2.5.1 Elementary flux modes -- 2.5.1.1 Mathematical construction of EFMs -- 2.5.1.2 Minimal generating sets and EFM reduction -- 2.5.2 Flux balance analysis -- 2.6 Metabolic Networks Reduction -- 2.6.1 The DRUM framework -- 2.7 Case Study: Microalgae Cultivation -- 2.7.1 Introduction: volatile fatty acid -- 2.7.2 Determination of the subnetworks and accumulating metabolites -- 2.7.3 Derivation of MR -- 2.7.4 Choice of kinetic model -- 2.7.5 Model calibration and validation -- 2.7.6 Example of application: optimization of waste treatment time -- 2.8 Conclusion -- References -- Chapter 3 : Wastewater treatment using microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1 Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2 Interactions within microalgal-bacterial consortia -- 3.1.3 Nutrient removal by microalgal-bacterial consortia -- 3.1.4 Microalgal-bacterial systems and configurations.
3.1.5 Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1 Light -- 3.1.5.2 pH -- 3.1.5.3 Hydraulic retention time -- 3.1.5.4 Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1 Advantages on ammonium removal rates -- 3.2.2 Operational conditions and area requirement -- 3.2.3 Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 : Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1 Green algae -- 4.2.2 Brown algae -- 4.2.2.1 Laminaria sp. -- 4.2.2.2 Sargassum sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1 Biogas -- 4.4.2 Biohydrogen -- 4.4.3 Biohythane -- 4.4.4 Bioethanol and biobutanol -- 4.4.4.1 Acetone-butanol-ethanol fermentation -- 4.4.4.2 Biobutanol -- 4.4.4.3 Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1 Biorefinery concepts -- 4.5.2 Key processes -- 4.5.2.1 Anaerobic digestion -- 4.5.2.2 Reactor design -- 4.5.3 Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 : Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1 Biology of microalgae-bacteria consortia -- 5.2.2 Engineering of photobioreactors -- 5.2.3 Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1 Improvement of biological systems. 5.3.2 Allocation and implementation of large-scale facilities -- 5.3.3 Optimal operation of processes -- 5.3.4 Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1 Improvement of sustainability of wastewater treatment -- 5.4.2 Distributed wastewater treatment -- 5.4.3 Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 : Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the Microalgae-Methanotroph Cocultures -- 6.3.1 Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2 Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1 Choice of a suitable biocatalyst -- 6.5.2 Coculture tolerance to contaminants in raw biogas -- 6.5.3 Freshwater consumption required by wastewater treatment -- 6.5.4 Pretreatment of AD effluent -- 6.5.5 Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other Technologies -- Chapter 7 : Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1 Algae as primary producers -- 7.2.2 Algae metabolism -- 7.2.3 Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs. 7.3.1 Algal species tested in MFC cathode compartment -- 7.3.2 Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1 Dual chambers vs sediment MFCs -- 7.4.2 Construction materials, electrolytes, electrodes and separators -- 7.4.3 Electrode materials -- 7.4.4 Separators -- 7.4.5 Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 : Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1 Liquid effluent -- 8.2.2 Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1 AD of microalgae -- 8.3.2 Pretreatment of microalgal biomass -- 8.3.3 Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1 Biorefinery based on integrated microalgae and AD technologies -- 8.5.2 Environmental impacts of integrated microalgae and AD technologies -- 8.5.3 Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 : Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1 Biodiesel production process -- 9.3.2 Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1 Bioethanol production process -- 9.4.2 Hydrolysis -- 9.4.3 Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology. Chapter 10 : Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1 Cosmetics -- 10.3.2 Pharmaceuticals -- 10.3.3 Food supplements -- 10.3.3.1 Protein content of algae -- 10.3.3.2 Single-cell protein -- 10.3.3.3 Carbohydrates -- 10.3.3.4 Lipids -- 10.3.3.5 Vitamins -- 10.3.3.6 Minerals -- 10.3.4 Agricultural products -- 10.3.4.1 Biofertilizer/biostimulants -- 10.3.4.2 Plant growth-promoting substances/hormones -- 10.3.4.3 Biopesticides -- 10.3.5 Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 : Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1 Cultivation conditions -- 11.3.1.1 Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2 Nutrient availability -- 11.3.1.3 Light -- 11.3.1.4 Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2 Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3 PHA blends -- 11.3.3.1 PHA blends with raw materials -- 11.3.3.2 PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1 Harvesting -- 11.4.1.1 Centrifugation -- 11.4.1.2 Filtration -- 11.4.1.3 Flocculation and coagulation -- 11.4.1.4 Gravity sedimentation -- 11.4.1.5 Flotation -- 11.4.2 Drying -- 11.4.3 Extraction -- 11.5 Challenges and Future Perspectives. 11.6 Conclusion. |
| Record Nr. | UNINA-9910768495103321 |
Lens Piet
|
||
| London : , : IWA Publishing, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environmental Technologies to Treat Sulfur Pollution : Principles and Engineering
| Environmental Technologies to Treat Sulfur Pollution : Principles and Engineering |
| Autore | Lens Piet |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London : , : IWA Publishing, , 2020 |
| Descrizione fisica | 1 online resource (545 pages) |
| Disciplina | 363.7/3 |
| Collana | Integrated Environmental Technology |
| Soggetto topico |
Sulfur compounds
Pollution control equipment |
| ISBN |
9781523162291
1523162295 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Contents -- Preface -- List of Contributors -- Part I: Introduction -- Chapter 1: Environmental technologies to treat sulfur pollution: How to read this book? -- 1.1 INTRODUCTION -- 1.2 THE SULFUR CYCLE -- 1.3 SULFUR-RELATED PROBLEMS -- 1.4 TECHNOLOGIES TO DESULFURISE RESOURCES -- 1.5 TREATMENT OF POLLUTION BY SULFUROUS COMPOUNDS -- 1.6 USE OF SULFUR CYCLE CONVERSIONS IN ADVANCED WASTEWATER TREATMENT AND RESOURCE RECOVERY -- REFERENCES -- Part II: The Sulfur Cycle -- Chapter 2: The chemical sulfur cycle -- 2.1 INTRODUCTION -- 2.1.1 Oxidation states and redox potentials -- 2.1.2 Catenation of sulfur atoms -- 2.2 ELEMENTAL SULFUR AND HYDROPHOBIC SULFUR SOLS -- 2.2.1 Sulfur allotropes -- 2.2.2 Liquid sulfur -- 2.2.3 Gaseous sulfur -- 2.2.4 Sulfur sols from elemental sulfur (Weimarn sols) -- 2.3 SULFIDE AND POLYSULFIDES -- 2.3.1 Hydrogen sulfide and sulfide ions -- 2.3.2 Polysulfides and polysulfanes -- 2.3.3 Polysulfido complexes of transition metals and ion pairs -- 2.3.4 Oxidation of sulfide and polysulfide ions by metal ions -- 2.4 SULFITES, THIOSULFATES, DITHIONITES AND DITHIONATES -- 2.4.1 Sulfur dioxide, sulfite and disulfite ions as well as sulfurous and sulfonic acids -- 2.4.2 Thiosulfates and thiosulfuric acid -- 2.4.3 Dithionites and dithionous acid -- 2.4.4 Dithionates and dithionic acid -- 2.5 POLYTHIONATES AND HYDROPHILIC SULFUR SOLS -- 2.5.1 Polythionates and polythionic acids -- 2.5.2 Hydrophilic sulfur sols (Raffo and Selmi sols) -- 2.6 SULFURIC ACID AND SULFATES -- 2.7 DISPROPORTIONATION OF ELEMENTAL SULFUR IN WATER -- 2.8 ORGANIC DERIVATIVES OF THE TYPE R-Sn-R (ORGANOPOLYSULFANES) -- 2.8.1 Synthetic polysulfanes -- 2.8.2 Naturally occurring polysulfanes -- REFERENCES -- Chapter 3: A biochemical view on the biological sulfur cycle -- 3.1 INTRODUCTION -- 3.2 IMPORTANT INORGANIC SULFUR COMPOUNDS OF THE BIOLOGICAL SULFUR CYCLE.
3.3 THE BIOLOGICAL SULFUR CYCLE -- 3.4 DISSIMILATORY REDUCTION OF OXIDIZED SULFUR COMPOUNDS -- 3.4.1 Dissimilatory reduction of sulfate -- 3.4.2 Dissimilatory reduction of sulfur cycle intermediates -- 3.4.2.1 Dissimilatory reduction of sulfite -- 3.4.2.2 Dissimilatory reduction of thiosulfate -- 3.4.2.3 Dissimilatory reduction of tetrathionate -- 3.4.2.4 Dissimilatory reduction of sulfur and polysulfides -- 3.5 DISSIMILATORY OXIDATION OF REDUCED SULFUR COMPOUNDS -- 3.5.1 Oxidation of thiosulfate -- 3.5.1.1 Oxidation of thiosulfate to tetrathionate -- 3.5.1.2 Oxidation of thiosulfate to sulfate: the Sox system -- 3.5.1.3 Role of Sox proteins for oxidation of sulfur compounds other than thiosulfate -- 3.5.2 Tetrathionate oxidation -- 3.5.3 Oxidation of sulfide and polysulfides -- 3.5.3.1 Sulfide:quinone oxidoreductase -- 3.5.3.2 Flavocytochrome c and multitude of sulfide-oxidizing systems -- 3.5.4 Oxidation of external sulfur -- 3.5.5 Biogenic sulfur globules -- 3.5.6 Sox-independent, cytoplasmic oxidation of sulfane sulfur to sulfite -- 3.5.6.1 rDsr pathway -- 3.5.6.2 sHdr pathway -- 3.5.6.3 Formation of sulfite via reactions involving molecular oxygen -- 3.5.6.3.1 Sulfur dioxygenase -- 3.5.6.3.2 Sulfur oxygenase reductase -- 3.5.7 Oxidation of sulfite -- 3.5.7.1 Oxidation of sulfite outside of the cytoplasm -- 3.5.7.2 Oxidation of sulfite in the cytoplasm -- 3.6 SULFUR DISPROPORTIONATION -- ACKNOWLEDGEMENTS -- REFERENCES -- Part III: Sulfur-Related Problems -- Chapter 4: Sulfur transformations in sewer networks: effects, prediction and mitigation of impacts -- 4.1 INTRODUCTION -- 4.2 SEWER NETWORK CHARACTERISTICS AND RELATED POTENTIAL FOR SULFUR TRANSFORMATIONS -- 4.2.1 Microbial and chemical process characteristics of sewer networks -- 4.2.2 Wastewater characteristics -- 4.2.3 Sewer networks -- 4.2.4 Microbial and chemical processes. 4.2.5 Transport characteristics -- 4.2.6 Formulation of the sulfur cycle in sewer networks -- 4.3 EFFECTS OF HYDROGEN SULFIDE IN SEWERS -- 4.4 FACTORS AFFECTING SULFIDE RELATED PROBLEMS IN SEWERS -- 4.4.1 Presence of sulfate -- 4.4.2 Temperature -- 4.4.3 Dissolved oxygen -- 4.4.4 pH -- 4.4.5 Area-to-volume ratio of sewer pipes -- 4.4.6 Quality and quantity of biodegradable organic matter -- 4.4.7 Anaerobic residence time in the sewer network -- 4.4.8 Flow velocity -- 4.5 PREDICTION OF SULFIDE RELATED ADVERSE EFFECTS IN SEWERS -- 4.5.1 Empirical equations for sulfide formation in pressure sewers and full flowing gravity sewers -- 4.5.2 Simple formulated "risk models" for sulfide build-up in gravity sewers -- 4.5.3 Empirical equations for sulfide formation in gravity sewers -- 4.5.4 Analytical and conceptual formulated sewer process models -- 4.5.5 Computational and probabilistic models for sewer deterioration and service life -- 4.5.6 Final comments for prediction of sulfide related impacts on sewers -- 4.6 METHODS FOR CONTROL OF SULFIDE PROBLEMS IN SEWERS -- 4.6.1 Suppression or inhibition of sulfide formation -- 4.6.1.1 pH increase -- 4.6.1.2 Mechanical removal of biofilm -- 4.6.1.3 Injection of oxygen or nitrate dosing -- 4.6.2 Reduction of the sulfide concentration in the water phase -- 4.6.2.1 Addition of electron acceptors -- 4.6.2.2 Iron salt addition -- 4.6.3 Reduction or dilution of sewer gases -- REFERENCES -- Chapter 5: Corrosion and sulfur-related bacteria -- 5.1 INTRODUCTION -- 5.2 MECHANISMS -- 5.2.1 Corrosion of concrete -- 5.2.1.1 Formation of aqueous hydrogen sulfide -- 5.2.1.2 Radiation and buildup of hydrogen sulfide -- 5.2.1.3 Generation of sulfuric acid -- 5.2.1.4 Deterioration of concrete materials -- 5.2.2 Corrosion of carbon steel -- 5.2.2.1 Cathodic depolarization. 5.2.2.2 Chemical microbiologically influenced corrosion (CMIC) -- 5.2.2.3 Electrical microbiologically influenced corrosion (EMIC) -- 5.2.2.4 SOB influenced corrosion -- 5.3 MIC OBSERVATIONS -- 5.3.1 MIC of concrete -- 5.3.1.1 Corrosion areas -- 5.3.1.2 Corrosion rates -- 5.3.1.3 Cement types -- 5.3.1.4 Siliceous and calcareous aggregates -- 5.3.2 MIC of carbon steel -- 5.3.2.1 Corrosion caused by SRB -- 5.3.2.2 Corrosion caused by SOB -- 5.4 MITIGATION AND CONTROL MEASURES -- 5.4.1 For MIC of concrete -- 5.4.1.1 Improving sewer design features -- 5.4.1.2 Controlling sulfide in the sewer environment -- 5.4.1.3 Improving the performance of concrete -- 5.4.2 For MIC of carbon steel -- 5.4.2.1 Biocides -- 5.4.2.2 Inhibitors -- 5.4.2.3 Biological inhibition -- 5.4.2.4 Periodic pigging/assuring cleanliness -- 5.4.2.5 Protective coatings -- 5.4.2.6 Cathodic protection -- REFERENCES -- Chapter 6: Biological treatment of organic sulfate-rich wastewaters -- 6.1 INTRODUCTION -- 6.2 ANAEROBIC TREATMENT OF SULFATE-RICH WASTEWATERS -- 6.2.1 Competition between sulfate-reducing bacteria and methanogenic archaea -- 6.2.2 Sulfide toxicity in anaerobic digestion -- 6.2.3 Techniques for quantification of sulfide toxicity on microbial populations involved in anaerobic digestion -- 6.2.3.1 Specific methanogenic activity/toxicity tests -- 6.2.3.2 Specific sulfidogenic activity/toxicity tests -- 6.2.3.3 Determination of kinetic growth properties of microbial populations -- 6.2.4 Sulfite toxicity -- 6.2.5 Cation inhibition in anaerobic digestion -- 6.3 PROCESS TECHNOLOGY OF TREATMENT OF ORGANIC SULFATE-RICH WASTEWATERS -- 6.3.1 Modelling the effect of sulfide toxicity in anaerobic digestion -- 6.3.2 Alleviating sulfide toxicity -- 6.4 DOWNSTREAM PROCESSES FOR BIOLOGICAL SULFATE-REDUCTION EFFLUENTS -- 6.4.1 Sulfide partial oxidation to elemental sulfur. 6.4.2 Sulfide oxidation using nitrate as electron acceptor -- 6.5 SRB-BASED BIOREMEDIATION TECHNIQUES -- 6.5.1 Treatment of inorganic sulfate-rich wastewaters -- 6.5.2 Heavy metal removal -- 6.5.3 Biodegradation of xenobiotics -- 6.5.4 Micro-aerobic treatment of sulfate-rich wastewaters -- 6.6 INTEGRATION OF SULFATE REDUCTION IN RESOURCE RECOVERY TECHNOLOGIES -- 6.6.1 Bio-commodities -- 6.6.2 Bio-electricity -- 6.6.3 Biomining and nanoparticles biosynthesis -- REFERENCES -- Chapter 7: Biological removal of sulfurous compounds and metals from inorganic wastewaters -- 7.1 INTRODUCTION -- 7.2 SULFUR-RICH WASTEWATERS ASSOCIATED WITH MINING ACTIVITIES -- 7.2.1 Origin of acid mine drainage -- 7.2.2 Chemical characteristics of AMD -- 7.2.3 Impact of AMD on the biosphere -- 7.3 PREVENTION, CONTAINMENT AND TREATMENT OF AMD -- 7.3.1 Non-biological prevention and remediation systems -- 7.3.2 Biological remediation systems -- 7.4 SULFATE REDUCTION IN MINE DRAINAGE WATERS AND OTHER EXTREMELY ACIDIC ENVIRONMENTS -- 7.4.1 Physiological constraints on sulfate- and sulfur-reduction -- 7.4.2 Acidophilic sulfate- and sulfur-reducing prokaryotes -- 7.5 BIOENGINEERING APPROACHES FOR REMEDIATING SULFATE-RICH MINE WATERS -- 7.5.1 Constructed wetlands -- 7.5.2 Bioreactor systems -- 7.5.3 Pros and cons of the options available for remediating acidic sulfurous wastewaters -- REFERENCES -- Chapter 8: Electrochemical removal of sulfur pollution -- 8.1 INTRODUCTION -- 8.2 ENVIRONMENTAL ELECTROCHEMISTRY TO TREAT SULFUR POLLUTION -- 8.2.1 Brief introduction to environmental electrochemistry -- 8.2.2 Basics of electrochemical engineering for environmental applications -- 8.2.2.1 The electrochemical cell -- 8.2.2.2 Thermodynamics of electrochemical reactions and the electrode potential -- 8.2.2.3 Overpotential and ohmic resistance. 8.2.2.4 Efficiencies of the electrochemical process. |
| Record Nr. | UNINA-9911007007303321 |
Lens Piet
|
||
| London : , : IWA Publishing, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery
| Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery |
| Autore | Lens Piet |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina | 628.35 |
| Altri autori (Persone) | UddandaraoPriyanka |
| Collana | Integrated Environmental Technology Series |
| Soggetto topico |
Nanotechnology
Green technology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1 Introduction -- 2.2 Root Cause Behind Continuous Freshwater Shrinking -- 2.3 Methodical Handling of Water Pollution -- 2.3.1 Treatment technologies -- 2.3.2 Major drawbacks of current water purification techniques -- 2.4 Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1 Use of nanoparticles in water purification and their problems -- 2.4.2 Enzymes in water purification and their problems -- 2.4.3 Use of NBIOH catalyst for water purification -- 2.4.3.1 Capacity of NBIOH to treat water -- 2.4.3.2 Problems associated with nanobiohybrid -- 2.5 Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1 Introduction -- 3.2 Green Synthesis of Nanoparticles -- 3.3 Biological Nanoparticles -- 3.3.1 Plants -- 3.3.2 Bacteria -- 3.4 Fungi -- 3.5 Algae -- 3.6 Photocatalysis -- 3.6.1 Batch degradation of organic pollutants using NPs -- 3.6.2 Photobioreactors -- 3.6.3 Nanobiohybrids -- 3.7 Challenges -- 3.7.1 Toxicity -- 3.7.2 Nanoparticles detection -- 3.7.3 Light accessibility -- 3.8 Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1 Battery basics.
4.2.1.1 Structure and components -- 4.2.1.2 Electrochemical reactions in batteries -- 4.2.2 Battery performance metrics -- 4.2.2.1 Cell, module, and pack level -- 4.2.2.2 Energy density -- 4.2.2.3 Power density -- 4.2.2.4 Specific energy (or gravimetric energy density) -- 4.2.2.5 Specific power (or gravimetric power density) -- 4.2.2.6 Cycle life -- 4.2.2.7 Charge-discharge efficiency -- 4.2.2.8 Self-discharge rate -- 4.2.2.9 Operating temperature -- 4.2.2.10 Impedance -- 4.2.2.11 Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1 Nickel-cadmium batteries -- 4.3.2 Lead-acid batteries -- 4.3.2.1 Lead-acid battery composition -- 4.3.2.2 Working principle of lead acid battery -- 4.3.2.3 Market perspective -- 4.3.3 Lithium-ion batteries -- 4.3.3.1 Lithium-ion battery composition -- 4.3.3.2 Working principle of lithium-ion battery -- 4.3.3.3 Market perspective -- 4.3.4 Sodium-ion batteries -- 4.3.5 Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1 Principles and operations -- 4.4.1.1 Electric double-layer capacitance -- 4.4.1.2 Faradaic capacitance -- 4.4.2 Supercapacitor electrode materials -- 4.4.2.1 Electrode materials for EDLC -- 4.4.2.2 Electrode materials for pseudocapacitor -- 4.4.2.3 Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1 Electrochemical double-layer capacitors -- 4.5.2 Pseudocapacitors -- 4.5.3 Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1 Portable electronics and consumer applications -- 4.6.2 Mobility of the future -- 4.6.2.1 Electric vehicles and hybrid vehicles -- 4.6.2.2 Aerospace applications -- 4.6.3 New energy technologies -- 4.6.3.1 Renewable energy integration. 4.6.3.2 Grid-scale energy storage -- 4.6.4 Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1 Introduction -- 5.2 Production of Nanobiohybrids -- 5.2.1 Nanohybrids based on cellulose -- 5.2.2 Nanohybrids based on gelatin -- 5.2.3 Nanohybrids based on chitosan -- 5.2.4 Nanohybrids based on pectin -- 5.2.5 Nanohybrid based on silk protein -- 5.3 Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1 Nanobiohybrids as adsorbent -- 5.3.2 Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1 Polymeric nanobiocatalyst -- 5.3.2.2 Silica-based nanobiocatalysts -- 5.3.2.3 Carbon-based nanobiocatalysts -- 5.3.2.4 Metal-based nanobiocatalysts -- 5.4 Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1 Introduction -- 6.1.1 Production of nanoparticles -- 6.1.2 Microbial nanohybrids -- 6.1.3 Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2 Biosynthesis of Metal NPS with Different Microbes -- 6.2.1 Bacteria -- 6.2.2 Algae -- 6.2.3 Fungi -- 6.3 Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1 Use of biogenic NPs to treat wastewater -- 6.3.2 Biogenic inorganic NPs -- 6.3.2.1 Bio-Fe and Bio-Mn NPs -- 6.3.2.2 Bio-Pd NPs -- 6.3.2.3 Bio-Au and Bio-Ag NPs -- 6.3.2.4 Bio-bimetal NPs -- 6.3.2.5 Composite Bio-Me NPs -- 6.4 Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1 Introduction -- 7.2 Source of Pollutants. 7.2.1 Ore extraction -- 7.2.2 Electroplating -- 7.2.3 Water pollution -- 7.2.3.1 Pharmaceutical waste -- 7.2.3.2 Dyes -- 7.2.4 Radionuclides -- 7.3 Sustainable Wastewater Treatment with Nanohybrids -- 7.4 Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1 Preparation of magnetic nanohybrid materials -- 7.4.2 Magnetic nanohybrid development -- 7.4.3 Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5 Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6 Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1 Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1 Activated charcoal/biochar-based materials -- 7.6.1.2 Carbon nanotubes -- 7.6.1.3 Graphene-based nanoadsorbents -- 7.6.1.4 Chitosan-based magnetic nanohybrid catalyst -- 7.6.2 Metal-based magnetic nanohybrid catalyst -- 7.6.2.1 Zeolites -- 7.6.2.2 Multi-metals-based magnetic nanohybrid catalyst -- 7.7 Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1 Favorable electrical conductivity of NMs -- 8.3.1.1 Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2 Conductive organic nanopolymers -- 8.3.2 Large specific surface area of NMs -- 8.3.3 Photocatalysis capability of NMs -- 8.3.3.1 Metal-based semiconductor NPs -- 8.3.3.2 Carbon-based semiconductor NPs -- 8.3.4 NMs stimulate production of cellular components related to electron transfer. 8.3.4.1 Increased production of c-Cyts in the presence of NMs -- 8.3.4.2 Increased EPS production in the presence of NMs -- 8.3.5 Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1 Biomimetic inorganic NPs -- 8.3.5.2 Nano-hydrogels -- 8.3.5.3 Hybrid coordination NMs -- 8.3.5.4 Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1 Internal bioaugmentation on an individual cell scale -- 8.4.2 External bioaugmentation on an individual cell scale -- 8.4.3 External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1 Present challenges for nanobiohybrid development -- 8.5.2 Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1 Introduction -- 9.2 Importance of Nanomaterials in the Nanobiohybrids -- 9.3 Choice of Nanomaterial -- 9.3.1 Metallic and metal oxide nanostructures -- 9.3.2 Carbonaceous nanomaterials -- 9.3.3 Quantum dots -- 9.3.4 Polymers -- 9.4 Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1 Proteins and peptides -- 9.4.2 Nucleic acids -- 9.4.3 Carbohydrates -- 9.4.4 Whole cells -- 9.5 Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1 Electrochemical nanobiohybrid sensors -- 9.5.2 Optical nanobiohybrid sensors -- 9.5.3 Magnetic nanobiohybrid sensors -- 9.5.4 Gravimetric nanobiohybrid sensors -- 9.5.5 Calorimetric nanobiohybrid sensors -- 9.6 Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction. 10.1.1 Need for environmental bioremediation. |
| Record Nr. | UNINA-9910768494903321 |
Lens Piet
|
||
| London : , : IWA Publishing, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||