Vai al contenuto principale della pagina
| Autore: |
Spelman David
|
| Titolo: |
Computational Fluid Dynamics Modeling in Water Infrastructure : Best Practices
|
| Pubblicazione: | Reston : , : American Society of Civil Engineers, , 2023 |
| ©2023 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (71 pages) |
| Soggetto topico: | Computational fluid dynamics |
| Hydraulic engineering | |
| Altri autori: |
YeeTien
PathapatiSrikanth
BeckKade J
LeeJohnny
KnatzCarrie
WangRuo-Qian
ZhangJie
Camacho-RinconRene
KamojjalaSri
|
| Nota di contenuto: | Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Contributors -- Acknowledgments -- Chapter 1 : Introduction -- References -- Chapter 2 : Domain Geometry and Process Models -- 2.1 Problem Formulation -- 2.2 Case Complexity -- 2.3 Adequacy of Two-Dimensional versus Three-Dimensional Modeling Approaches -- 2.4 Consideration of Coordinate Systems -- 2.5 Computational Fluid Dynamics Software Selection -- 2.6 Timescales -- 2.7 Domain Geometry -- 2.8 Scale of the Problem -- 2.9 Process Models -- 2.9.1 Physical Process Models -- 2.9.2 Biological Process Models -- 2.9.3 Chemical Process Models -- References -- Chapter 3 : Meshing -- 3.1 Mesh Types -- 3.2 Characteristics of a Good-Quality Mesh -- 3.3 Mesh Size -- 3.4 Meshing Strategy -- References -- Chapter 4 : Initial and Boundary Conditions -- 4.1 General Considerations -- 4.2 Defining Turbulence Closure Conditions at Boundaries -- 4.3 Cell Zone Conditions -- References -- Chapter 5 : Numerical Methods -- 5.1 Discretization of Equations -- 5.2 Coupled versus Segregated Solver -- 5.3 Controlling the Rate of Convergence and Stability -- 5.3.1 Underrelaxation Factors -- 5.3.2 Solution Initialization -- 5.3.3 Time-Dependent Solutions -- 5.4 Choice of Numerical Scheme -- References -- Chapter 6 : Choosing Turbulence Schemes -- 6.1 Turbulent-Resolving Strategies -- 6.1.1 Direct Numerical Simulation -- 6.1.2 Large-Eddy Simulation -- 6.1.3 Reynolds-Averaged Navier-Stokes -- 6.2 Reynolds-Averaged Navier-Stokes Closure Models -- Reference -- Chapter 7 : Grid Independence Tests -- 7.1 How to Test for Sufficient Grid Resolution -- 7.2 Case Study -- References -- Chapter 8 : Model Verification, Calibration, and Validation -- 8.1 Sources of Uncertainty in Engineering Computational Fluid Dynamics Simulations. |
| 8.2 Verification -- 8.3 Calibration -- 8.4 Validation -- References -- Chapter 9 : Documentation and Reporting -- Chapter 10 : Quality Control -- 10.1 Quality Control Procedures -- 10.2 Why Quality Control Is Important -- Chapter 11 : Conclusions -- Index. | |
| Sommario/riassunto: | This publication introduces a general framework for providing the best computational fluid dynamics modeling practices for water infrastructure design and retrofit. It serves as a primer for developing future material for applications in the water and wastewater fields. |
| Titolo autorizzato: | Computational Fluid Dynamics Modeling in Water Infrastructure ![]() |
| ISBN: | 9781523161935 |
| 1523161930 | |
| 9780784485125 | |
| 0784485127 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911007275203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |