Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
| Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee |
| Autore | Lee Usik |
| Pubbl/distr/stampa | Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 |
| Descrizione fisica | 1 online resource (470 p.) |
| Disciplina | 624.171 |
| Soggetto topico |
Structural dynamics - Mathematics
Structural frames - Mathematical models Spectral theory (Mathematics) |
| ISBN |
1-282-37142-8
9786612371424 0-470-82376-3 0-470-82375-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method 3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions 4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid Appendix 6.B: Finite Element Matrices: Unsteady Fluid |
| Record Nr. | UNINA-9910139927103321 |
Lee Usik
|
||
| Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
| Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee |
| Autore | Lee Usik |
| Pubbl/distr/stampa | Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 |
| Descrizione fisica | 1 online resource (470 p.) |
| Disciplina | 624.171 |
| Soggetto topico |
Structural dynamics - Mathematics
Structural frames - Mathematical models Spectral theory (Mathematics) |
| ISBN |
1-282-37142-8
9786612371424 0-470-82376-3 0-470-82375-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method 3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions 4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid Appendix 6.B: Finite Element Matrices: Unsteady Fluid |
| Record Nr. | UNINA-9910830809203321 |
Lee Usik
|
||
| Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spectral element method in structural dynamics / / Usik Lee
| Spectral element method in structural dynamics / / Usik Lee |
| Autore | Lee Usik |
| Pubbl/distr/stampa | Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 |
| Descrizione fisica | 1 online resource (470 p.) |
| Disciplina | 624.171 |
| Soggetto topico |
Structural dynamics - Mathematics
Structural frames - Mathematical models Spectral theory (Mathematics) |
| ISBN |
9786612371424
9781282371422 1282371428 9780470823767 0470823763 9780470823750 0470823755 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method 3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions 4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid Appendix 6.B: Finite Element Matrices: Unsteady Fluid |
| Record Nr. | UNINA-9911020228003321 |
Lee Usik
|
||
| Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||