Advances in Optical Form and Coordinate Metrology |
Autore | Leach Richard |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2021 |
Descrizione fisica | 1 online resource (229 pages) |
Altri autori (Persone) |
SeninNicola
CatalucciSofia IsaMohammed A PianoSamanta Sims-WaterhouseDanny ChenRui XuJing ZhangSong EastwoodJoe |
Collana | IOP Series in Emerging Technologies in Optics and Photonics Series |
ISBN | 0-7503-4101-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Editor biography -- Richard Leach -- List of contributors -- Chapter 1 Terms, definitions and standards -- 1.1 Introduction -- 1.2 Surface and coordinate terms and definitions -- 1.3 General metrology terms and definitions -- 1.4 Specification standards for coordinate metrology -- 1.4.1 Coordinate metrology standards -- Acknowledgements -- References -- Chapter 2 State-of-the-art in point cloud analysis -- 2.1 Introduction -- 2.1.1 Mathematical representation of 3D point clouds -- 2.1.2 Common 3D point cloud file formats -- 2.1.3 Point cloud transformations -- 2.2 Extracting properties and organising information in point clouds -- 2.2.1 Convex hull and bounding boxes -- 2.2.2 Centroid and principal axes of a point cloud -- 2.2.3 Spatial subdivision of point clouds -- 2.3 Point cloud pre-processing -- 2.3.1 Point cloud simplification, decimation and resampling -- 2.3.2 Elimination of isolated points and noise reduction -- 2.3.3 Triangle meshes and conversion to/from point clouds -- 2.4 Point features and partitioning -- 2.4.1 Point normals -- 2.4.2 Point curvatures -- 2.4.3 Partitioning and segmentation -- 2.5 Point cloud fitting -- 2.5.1 Fitting methods -- 2.6 Registration of point clouds -- 2.6.1 Registration based on external references or based on matching landmarks -- 2.6.2 The absolute orientation problem -- 2.6.3 Alignment by means of principal component analysis -- 2.6.4 RANSAC alignment -- 2.6.5 Alignment by iterative closest points -- 2.6.6 Landmark matching and alignment using similarity metrics -- 2.7 Measurement uncertainty in point cloud surface data -- 2.7.1 Approaches to the estimation of measurement uncertainty -- 2.7.2 Uncertainty associated with point clouds -- 2.8 Conclusions -- References -- Chapter 3 Laser triangulation -- 3.1 Laser triangulation -- 3.2 Laser triangulation sensors.
3.3 Laser triangulation measurement dependence on surface properties -- 3.3.1 Measurement uncertainty limit -- 3.3.2 Surface reflectance perspective -- 3.3.3 Measurement dependence on surface form -- 3.4 Laser triangulation systems -- 3.4.1 Extension of a point based laser triangulation sensor -- 3.4.2 Point measurement systems -- 3.4.3 Profile measurement systems -- 3.4.4 Surface measurement systems -- 3.4.5 Advanced laser triangulation systems -- 3.5 Working process of laser triangulation -- 3.5.1 Characterisation of intrinsic parameters -- 3.5.2 Characterisation of extrinsic parameters -- 3.5.3 Pre-calibration of laser triangulation systems -- 3.5.4 Scanning path planning -- 3.5.5 Image pre-processing -- 3.5.6 Laser feature extraction -- 3.5.7 Refinement and postprocessing -- 3.6 Application of laser triangulation measurements -- 3.6.1 Application of laser triangulation in emerging manufacturing methods -- 3.6.2 Application for geometric inspection -- 3.6.3 Application of 3D reconstructed models -- 3.7 Conclusions -- References -- Chapter 4 Close-range photogrammetry -- 4.1 Introduction -- 4.1.1 Modern photogrammetry -- 4.1.2 Camera projection theory -- 4.1.3 The pinhole camera model -- 4.1.4 Distortion modelling -- 4.2 Characterisation and calibration -- 4.2.1 Camera characterisation -- 4.2.2 Linear techniques -- 4.2.3 Non-linear methods -- 4.2.4 Self-calibration -- 4.3 System calibration -- 4.3.1 Arbitrary scale -- 4.4 Image acquisition -- 4.4.1 Depth of field -- 4.4.2 Imaging procedure optimisation -- 4.5 Summary -- References -- Chapter 5 Digital fringe projection profilometry -- 5.1 Introduction -- 5.2 Fringe pattern generation methods -- 5.2.1 Conventional fringe generation methods -- 5.2.2 Digital binary defocusing techniques -- 5.2.3 New fringe pattern generation methods -- 5.3 Fringe analysis. 5.3.1 Conventional fringe analysis techniques -- 5.3.2 Machine learning enhanced fringe analysis methods -- 5.4 Phase unwrapping -- 5.4.1 Conventional phase unwrapping methods -- 5.4.2 Non-conventional phase unwrapping methods -- 5.4.3 Machine-learning-based phase unwrapping methods -- 5.5 High dynamic range techniques -- 5.6 Calibration -- 5.6.1 Conventional methods -- 5.6.2 Recent developments -- 5.7 High-speed FPP realisation -- 5.7.1 Conventional high-speed FPP methods -- 5.7.2 Recent developments -- 5.8 Towards automation -- 5.9 Towards integrated solutions -- 5.9.1 3D imaging system for crime scene evidence collection -- 5.9.2 Robotic path planning -- 5.10 Summary -- References -- Chapter 6 Machine learning approaches -- 6.1 Introduction -- 6.2 Overview of machine learning and machine learning methods -- 6.3 Machine learning for stereo matching -- 6.3.1 Learned stereo machines -- 6.4 Machine learning for phase unwrapping -- 6.5 Learning depth from a single image -- 6.5.1 Characterisation of cameras and projectors -- 6.6 Machine learning for point cloud analysis -- 6.6.1 Point cloud segmentation -- 6.6.2 Point cloud registration -- 6.6.3 Point cloud completion -- 6.7 Conclusions -- References -- Chapter 7 Precision freeform metrology -- 7.1 Overview of freeform surfaces -- 7.2 Framework for precision freeform metrology -- 7.3 Characterisation of freeform surfaces -- 7.3.1 Surface fitting and reconstruction -- 7.3.2 Surface matching -- 7.3.3 Surface parameters for form error evaluation -- 7.4 Conclusions and future research -- Acknowledgments -- References -- Chapter 8 Performance verification for optical co-ordinate metrology -- 8.1 Introduction -- 8.2 Material measures -- 8.2.1 Material measure 1 -- 8.2.2 Material measure 2 -- 8.2.3 Material measure 3 -- 8.2.4 Material measure 4 -- 8.3 The different types of performance verification test. 8.4 Specification of errors -- 8.4.1 General guidelines for performance verification -- 8.5 Performance verification procedures -- 8.5.1 Measurements with representative points -- 8.5.2 General preparation for the performance verification test -- 8.5.3 Probing characteristics -- 8.5.4 Distortion characteristics -- 8.5.5 Length measurement errors -- 8.6 Compliance with specifications -- 8.6.1 Formal definition of performance verification -- 8.6.2 Retesting after a failed compliance with specifications -- 8.7 A final note on the validity of performance verification -- References. |
Record Nr. | UNINA-9910861040103321 |
Leach Richard | ||
Bristol : , : Institute of Physics Publishing, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Characterisation of Areal Surface Texture |
Autore | Leach Richard |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2024 |
Descrizione fisica | 1 online resource (390 pages) |
Disciplina | 620.440287 |
ISBN |
9783031593109
9783031593093 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Introduction to Surface Topography -- 1 Surface Topography Measurement and Characterisation -- 2 Surface Profile -- 3 Areal Surface Topography -- 4 Software Measurement Standards -- 5 Current International Standards -- 5.1 Profile Standards -- 5.2 Areal Standards -- References -- The Areal Field Parameters -- 1 Short History of Areal Parameters -- 2 Naming and Filtering -- 2.1 Naming -- 2.2 Filtering Conditions -- 3 Approximations and Implementation -- 3.1 Centred Heights -- 3.2 Sampling Area -- 3.3 Continuous Against Discrete Definitions -- 3.4 Validation of Parameters -- 4 Height Parameters -- 4.1 Mean Height of the Surface -- 4.2 Skewness and Kurtosis -- 4.3 Maximum Height of the Surface -- 5 Function Related Parameters -- 5.1 Height Distribution and Material Ratio Curve -- 5.2 Material Ratio Parameters -- 5.3 Characterisation of Stratified Surfaces -- 5.4 Volume Parameters -- 6 Hybrid Parameters -- 6.1 Root Mean Square Gradient Sdq -- 6.2 Developed Interfacial Area Ratio Sdr -- 7 Spatial Parameters -- 7.1 Autocorrelation Function -- 7.2 Autocorrelation Length Sal -- 7.3 Texture Aspect Ratio Str -- 7.4 Texture Direction Std -- 7.5 Dominant Spatial Wavelength Ssw -- 8 Fractal Parameters -- 8.1 Introduction to Fractal Parameters -- 8.2 Scale-Sensitive Functions -- 8.3 Fractal Dimension -- 8.4 Fractal Complexity -- 8.5 Rough-Smooth Crossover -- 9 Other Areal Parameters -- 9.1 Areal Parameters from ASME B46.1 -- 9.2 Areal Parameters from Earlier Reference Documents -- References -- The Areal Feature Parameters -- 1 Definitions of Topological Features -- 1.1 Introduction -- 1.2 Contour Lines -- 1.3 Hills -- 1.4 Dales -- 1.5 Saddle Points -- 1.6 Motifs -- 2 Watershed Segmentation -- 3 The Change Tree and Pruning -- 3.1 Definition of a Motif Height -- 3.2 Change Tree and Wolf Pruning.
3.3 Open and Closed Motifs -- 4 Feature Parameters -- 4.1 Peak Density Spd -- 4.2 Peak Curvature Spc -- 5 Motif Slope -- 5.1 Significant Heights -- 5.2 Area and Volume -- 5.3 Morphological Parameters -- 6 Automatic Partitioning and Levelling -- 7 Verification of Nominal Geometry -- 8 Specification of Feature Parameters -- References -- Areal Filtering Methods -- 1 Basic Concepts-The Scale Limited Surface -- 2 Linear and Robust Filters -- 2.1 Planar and Cylindrical Filters -- 2.2 The Linear Gaussian Filter -- 2.3 The Linear and Robust Gaussian Regression Filter -- 2.4 The Spline Filter -- 3 Morphological Filters -- 4 Multi-resolution Analysis by Wavelets -- 4.1 Fourier Transform -- 4.2 Continuous Wavelet Transform -- 4.3 Discrete Wavelet Transform and Multi-resolution -- 5 Summary -- References -- Areal Form Removal -- 1 Introduction -- 2 Form Model Definition -- 2.1 Functionally Defined Surfaces -- 2.2 Algebraically Defined Surfaces -- 2.3 Parametrically Defined Surfaces -- 3 Measures of Distance from a Point to a Surface -- 3.1 Difference in Height -- 3.2 Algebraic Distance -- 3.3 Distance Related to a Surface Feature -- 3.4 Orthogonal Distance from a Point to a Surface -- 4 Fitting Criteria -- 5 Form Removal Using the Fitted Surface -- 5.1 Functionally Defined Surfaces -- 5.2 Algebraically Defined Surfaces -- 5.3 Parametrically Defined Surfaces -- 6 Form Removal and Areal Parameter Uncertainty -- 6.1 Uncertainties Associated with the Fitted Parameters -- 6.2 Interpretation of the Variance Matrix Associated with the Fitted Parameters -- 6.3 Statistical Models Associated with the Data -- 6.4 Uncertainties Associated with the Form Removal Operator -- 6.5 Uncertainties Associated with Areal Parameters -- 7 Model Fitting Approaches -- 7.1 Least-Squares Model Fitting -- 7.2 L1 Model Fitting -- 7.3 Chebyshev Model Fitting. 7.4 Discussion on the Fitting Criteria -- 8 Areal Form Removal -- 8.1 Plane -- 8.2 Sphere -- 8.3 Other Geometric Elements -- 8.4 Quadric Surfaces -- 8.5 Empirical Surfaces with Spatial Correlation Structure -- 8.6 Form Removal Using Filters -- 9 Summary and Concluding Remarks -- References -- Fractal-Related Multiscale Geometric Characterisation of Topographies -- 1 Introduction to Fractal-Related Multiscale Geometric Methods -- 1.1 Rationale: The Value in Characterising Topographies -- 1.2 The Chaotic Nature of Texture and Topographies -- 1.3 The Inherent Chaotic Nature of Measured Surface Topographies -- 2 Diverse Fractal Characterisation Methods -- 2.1 Fractals and Basic Geometric Properties of Surfaces -- 2.2 Notes on the Use of the Term ''Scale'' -- 3 Length-Scale Analysis -- 4 Area-Scale Analysis -- 4.1 Triangular Tilings for Calculating Areas -- 4.2 Value Adding Applications of Area-Scale Analyses -- 5 Curvature-Scale Analyses -- 6 Concluding Remarks -- References -- Feature-Based Characterisation of Areal Surface Topography -- 1 Introduction -- 1.1 Structure of the Chapter -- 2 Foundation -- 2.1 Topography as the Realisation of a Discrete Random Field -- 2.2 Stationarity of the Random Field and Characterisation Using ISO Field Parameters -- 2.3 Testing for Stationarity -- 2.4 The Decomposition-Recomposition Approach to Feature-Based Characterisation -- 2.5 Randomness and Determinism of Surface Topography: Influence on Partitioning and Characterisation -- 2.6 Characterisation of the Entire Surface Against Characterisation of Individual Features -- 2.7 Families of Methods Involved in Feature-Based Characterisation -- 3 Areal Topography Measurement and Data Structures for FBC -- 3.1 The Gridded Sampling Model and Resulting Representations for Areal Topography Data -- 3.2 Unidirectional Observation and Maximum Detectable Slope. 3.3 Limitations on Topography Aspect Ratio -- 4 Pre-processing of Areal Topography Data for FBC -- 4.1 Handling of Missing Measurement Values -- 4.2 Identification and Processing of Measurement Artefacts -- 4.3 Levelling and Form Removal -- 4.4 Filtering -- 4.5 Analysis of Stationarity -- 5 Segmentation of Areal Topography Data -- 6 Identification of Baselines for Segmentation -- 6.1 Morphological Segmentation into Hills and Dales -- 6.2 Segmentation by Value Thresholding -- 6.3 Segmentation by Clustering -- 6.4 Segmentation by Region Growing -- 6.5 Segmentation by Edge Detection -- 6.6 Segmentation by Pattern Matching -- 6.7 Iterative Segmentation -- 7 Feature Detection and Identification -- 7.1 Feature Identification Starting from Segmentation Results -- 7.2 Feature Identification Without Segmentation: Similarity Metrics and Topography Descriptors -- 8 Feature Characterisation -- 9 Feature-Based Surface Reconstruction -- 10 Performance and Uncertainty in FBC -- 10.1 FBC Performance in Feature Identification and Feature Counting -- 10.2 FBC Performance in Segmentation and Feature Characterisation -- 10.3 Accuracy and Precision in FBC -- 10.4 Incorporating Error Related to Topography Measurement in FBC -- 11 Suggested Pipeline for FBC -- 12 Conclusions -- References -- Quantifying Surface Texture with Deep Learning on Laser Treated Surfaces -- 1 Introduction -- 2 Methodology -- 2.1 Classification -- 2.2 Traditional Classification Methods -- 2.3 Deep Learning -- 3 Proposed Solution -- 3.1 Areal Measurement Solution -- 3.2 Automatic Classification -- 3.3 Applications -- 4 Conclusion -- References -- In-Process Automated Areal Surface Measurement -- 1 Introduction -- 2 Cost Justification -- 3 Hardware and Software Requirements of the Automation -- 4 Measurement Technology: Vibration-Immunity and Easy Alignment -- 5 Edge Break and Radius Measurements. 6 Automated Defect Identification -- 7 Using the Robot to Aid Stitching, CAD Comparison and Data Meshing -- 8 Summary -- References -- The Relationship Between Friction and the Areal Texture of Aggregate Particles Used in the Road Surface Course -- 1 Background -- 2 Methodology -- 2.1 Aggregate Selection -- 2.2 Wehner-Schulze Machine -- 2.3 Progressive Polishing Regime -- 3 Measurement of Surface Texture -- 4 Analysis -- 4.1 Qualitative Changes in Surface Texture -- 4.2 Characterisation of Surface Texture -- 5 Conclusions -- References -- Automotive Applications-Cylinder Liners and Tool Steel Polishing for Injection Moulding of Plastic Parts -- 1 Introduction -- 2 Methods -- 2.1 Method for Extraction of the Groove Parameters -- 2.2 Method for Rating of the Surfaces -- 3 Case Study 1: Blechmantel Effect on the Wear of Truck Liners -- 4 Case Study 2: Assessment of Surface Finish Improvement of Car Liners -- 5 Case Study 3: Traceology for Polishing Control of Dies and Moulds for Automotive Plastic Parts -- 6 Conclusion -- References -- Metal Powder Bed Fusion Additive Manufacturing -- 1 Introduction -- 1.1 Additive Manufacturing Overview -- 1.2 Metal Powder Bed Fusion Overview -- 1.3 Notes on Metal Powder Bed Fusion Surfaces -- 2 Good Practice in Metal Powder Bed Fusion Surface Characterisation -- 2.1 General Considerations in Measurement -- 2.2 Bandwidth Matching -- 2.3 Filter Choices -- 2.4 Field Parameters -- 2.5 Feature Parameters -- 2.6 Characterisation of Individual Areal Features -- 3 Internal Surface Measurement-An Industrial Test Case -- 3.1 Case Study Methodology -- 3.2 Case Study Results -- 3.3 Case Study Discussion -- 3.4 Case Study Summary -- 4 Feature-Based Characterisation of Metal Powder Bed Fusion Surfaces-A Research Case -- 4.1 Case study Methodology -- 4.2 Case Study Discussion -- 4.3 Case Study Summary -- 5 Chapter Summary. References. |
Record Nr. | UNINA-9910865281203321 |
Leach Richard | ||
Cham : , : Springer International Publishing AG, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|