Zonotopes : from guaranteed state-estimation to control / / Vu Tuan Hieu Le [and four others] ; series editor, Francis Castanie |
Pubbl/distr/stampa | London, [England] ; Hoboken, New Jersey : , : John Wiley and Sons, Incorporation, , 2013 |
Descrizione fisica | 1 online resource (168 p.) |
Disciplina | 629.8 |
Altri autori (Persone) |
LeVu Tuan Hieu
CastaniéFrancis |
Collana | Automation-control and industrial engineering series |
Soggetto topico |
Automatic control
Estimation theory |
ISBN |
1-118-76159-6
1-118-76158-8 1-118-76154-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title page; Contents; Notations; Acronyms; Introduction; Chapter 1. Uncertainty Representation Based on Set Theory; 1.1. Basic set definitions: advantages and weaknesses; 1.1.1. Interval set; 1.1.2. Ellipsoidal set; 1.1.3. Polyhedral set; 1.1.4. Zonotopic set; 1.2. Main properties of zonotopes; Chapter 2. Several Approaches on Zonotopic Guaranteed Set-Membership Estimation; 2.1. Context; 2.2. Problem formulation; 2.2.1. Singular Value Decomposition-based method 35; 2.2.2. Optimization-based methods; Chapter 3. Zonotopic Guaranteed State Estimation Based on P-Radius Minimization
3.1. Single-Output systems approach3.2. Multi-Output systems approaches; 3.2.1. General formulation; 3.2.2. Extensions of the Single-Output systems methodology; 3.2.3. Dedicated approach for Multi-Output systems; Chapter 4. Tube Model Predictive Control Based on Zonotopic Set-Membership Estimation; 4.1. Context; 4.2. Problem formulation; 4.3. Tube-based output feedback Model Predictive Control design; 4.4. Application on the magnetic levitation system; 4.4.1. System description; 4.4.2. Control problem; Conclusion and Perspectives; Appendix. Basic Matrix Operation Definitions; Bibliography Index |
Record Nr. | UNINA-9910140184003321 |
London, [England] ; Hoboken, New Jersey : , : John Wiley and Sons, Incorporation, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Zonotopes : from guaranteed state-estimation to control / / Vu Tuan Hieu Le [and four others] ; series editor, Francis Castanie |
Pubbl/distr/stampa | London, [England] ; Hoboken, New Jersey : , : John Wiley and Sons, Incorporation, , 2013 |
Descrizione fisica | 1 online resource (168 p.) |
Disciplina | 629.8 |
Altri autori (Persone) |
LeVu Tuan Hieu
CastaniéFrancis |
Collana | Automation-control and industrial engineering series |
Soggetto topico |
Automatic control
Estimation theory |
ISBN |
1-118-76159-6
1-118-76158-8 1-118-76154-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title page; Contents; Notations; Acronyms; Introduction; Chapter 1. Uncertainty Representation Based on Set Theory; 1.1. Basic set definitions: advantages and weaknesses; 1.1.1. Interval set; 1.1.2. Ellipsoidal set; 1.1.3. Polyhedral set; 1.1.4. Zonotopic set; 1.2. Main properties of zonotopes; Chapter 2. Several Approaches on Zonotopic Guaranteed Set-Membership Estimation; 2.1. Context; 2.2. Problem formulation; 2.2.1. Singular Value Decomposition-based method 35; 2.2.2. Optimization-based methods; Chapter 3. Zonotopic Guaranteed State Estimation Based on P-Radius Minimization
3.1. Single-Output systems approach3.2. Multi-Output systems approaches; 3.2.1. General formulation; 3.2.2. Extensions of the Single-Output systems methodology; 3.2.3. Dedicated approach for Multi-Output systems; Chapter 4. Tube Model Predictive Control Based on Zonotopic Set-Membership Estimation; 4.1. Context; 4.2. Problem formulation; 4.3. Tube-based output feedback Model Predictive Control design; 4.4. Application on the magnetic levitation system; 4.4.1. System description; 4.4.2. Control problem; Conclusion and Perspectives; Appendix. Basic Matrix Operation Definitions; Bibliography Index |
Record Nr. | UNINA-9910807704103321 |
London, [England] ; Hoboken, New Jersey : , : John Wiley and Sons, Incorporation, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|