Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations [[electronic resource] ] : VIASM 2016 / / by Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran
| Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations [[electronic resource] ] : VIASM 2016 / / by Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
| Autore | Le Nam Q |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (VII, 228 p. 16 illus., 1 illus. in color.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Partial differential equations
Calculus of variations Differential geometry Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Differential Geometry |
| ISBN | 3-319-54208-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Part I The Second Boundary Value Problem of the Prescribed Affine Mean Curvature Equation and Related Linearized Monge-Ampère Equation -- Introduction -- Notation -- 1 The Affine Bernstein and Boundary Value Problems -- 1.1 The Affine Bernstein and Boundary Value Problems -- 1.1.1 Minimal Graph -- 1.1.2 Affine Maximal Graph -- 1.1.3 The Affine Bernstein Problem -- 1.1.4 Connection with the Constant Scalar Curvature Problem -- 1.1.5 The First Boundary Value Problem -- 1.1.6 The Second Boundary Value Problem of the Prescribed Affine Mean Curvature Equation -- 1.1.7 Solvability of the Second Boundary Value Problem -- 1.2 Existence of Solution to the Second Boundary Value Problem -- 1.2.1 Existence of Solution via Degree Theory and A Priori Estimates -- 1.2.2 Several Boundary Regularity Results for Monge-Ampère and Linearized Monge-Ampère Equations -- 1.3 Proof of Global W4,p and C4,α Estimates -- 1.3.1 Test Functions -- 1.3.2 L1 Bound and Lower Bound on the Hessian Determinant -- 1.3.3 Gradient Bound -- 1.3.4 Legendre Transform and Upper Bound on Hessian Determinant -- References -- 2 The Linearized Monge-Ampère Equation -- 2.1 The Linearized Monge-Ampère Equation and Interior Regularity of Its Solution -- 2.1.1 The Linearized Monge-Ampère Equation -- 2.1.2 Linearized Monge-Ampère Equations in Contexts -- 2.1.3 Difficulties and Expected Regularity -- 2.1.4 Affine Invariance Property -- 2.1.5 Krylov-Safonov's Harnack Inequality -- 2.1.6 Harnack Inequality for the Linearized Monge-Ampère Equation -- 2.2 Interior Harnack and Hölder Estimates for Linearized Monge-Ampère -- 2.2.1 Proof of Caffarelli-Gutiérrez's Harnack Inequality -- 2.2.2 Proof of the Interior Hölder Estimates for the Inhomogeneous Linearized Monge-Ampère Equation -- 2.3 Global Hölder Estimates for the Linearized Monge-Ampère Equations.
2.3.1 Boundary Hölder Continuity for Solutions of Non-uniformly Elliptic Equations -- 2.3.2 Savin's Localization Theorem -- 2.3.3 Proof of Global Hölder Estimates for the Linearized Monge-Ampère Equation -- References -- 3 The Monge-Ampère Equation -- 3.1 Maximum Principles and Sections of the Monge-Ampère Equation -- 3.1.1 Basic Definitions -- 3.1.2 Examples and Properties of the Normal Mapping and the Monge-Ampère Measure -- 3.1.3 Maximum Principles -- 3.1.4 John's Lemma -- 3.1.5 Comparison Principle and Applications -- 3.1.6 The Dirichlet Problem and Perron's Method -- 3.1.7 Sections of Convex Functions -- 3.2 Geometry of Sections of Solutions to the Monge-Ampère Equation -- 3.2.1 Compactness of Solutions to the Monge-Ampère Equation -- 3.2.2 Caffarelli's Localization Theorem -- 3.2.3 Strict Convexity and C1,α Estimates -- 3.2.4 Engulfing Property of Sections -- Appendix A: Auxiliary Lemmas -- Appendix B: A Heuristic Explanation of Trudinger-Wang's Non-smooth Example -- References -- Part II Dynamical Properties of Hamilton-Jacobi Equations via the Nonlinear Adjoint Method: Large Time Behavior and Discounted Approximation -- Introduction -- Notations -- References -- 4 Ergodic Problems for Hamilton-Jacobi Equations -- 4.1 Motivation -- 4.2 Existence of Solutions to Ergodic Problems -- References -- 5 Large Time Asymptotics of Hamilton-Jacobi Equations -- 5.1 A Brief Introduction -- 5.2 First-Order Case with Separable Hamiltonians -- 5.2.1 First Example -- 5.2.2 Second Example -- 5.3 First-Order Case with General Hamiltonians -- 5.3.1 Formal Calculation -- 5.3.2 Regularizing Process -- 5.3.3 Conservation of Energy and a Key Observation -- 5.3.4 Proof of Key Estimates -- 5.4 Degenerate Viscous Case -- 5.5 Asymptotic Profile of the First-Order Case -- 5.6 Viscous Case -- 5.7 Some Other Directions and Open Questions -- References. 6 Selection Problems in the Discounted Approximation Procedure -- 6.1 Selection Problems -- 6.1.1 Examples on Nonuniqueness of Ergodic Problems -- 6.1.2 Discounted Approximation -- 6.2 Regularizing Process -- 6.2.1 Regularizing Process and Construction of M -- 6.2.2 Stochastic Mather Measures -- 6.2.3 Key Estimates -- 6.3 Proof of Theorem 6.5 -- 6.4 Proof of the Commutation Lemma -- 6.5 Applications -- 6.5.1 Limit of u in Example 6.1 -- 6.5.2 Limit of u in Examples 6.3, 6.4 -- 6.6 Some Other Directions and Open Questions -- 6.6.1 Discounted Approximation Procedure -- 6.6.2 Vanishing Viscosity Procedure -- 6.6.3 Selection of Mather Measures -- References -- 7 Appendix of Part II -- 7.1 Motivation and Examples -- 7.1.1 Front Propagation Problems -- 7.1.2 Optimal Control Problems -- 7.1.2.1 Inviscid Cases -- 7.1.2.2 Viscous Cases -- 7.2 Definitions -- 7.3 Consistency -- 7.4 Comparison Principle and Uniqueness -- 7.5 Stability -- 7.6 Lipschitz Estimates -- 7.7 The Perron Method -- References. |
| Record Nr. | UNISA-996466643603316 |
Le Nam Q
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations : VIASM 2016 / / by Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran
| Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations : VIASM 2016 / / by Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
| Autore | Le Nam Q |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (VII, 228 p. 16 illus., 1 illus. in color.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Differential equations, Partial
Calculus of variations Geometry, Differential Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Differential Geometry |
| ISBN | 3-319-54208-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Part I The Second Boundary Value Problem of the Prescribed Affine Mean Curvature Equation and Related Linearized Monge-Ampère Equation -- Introduction -- Notation -- 1 The Affine Bernstein and Boundary Value Problems -- 1.1 The Affine Bernstein and Boundary Value Problems -- 1.1.1 Minimal Graph -- 1.1.2 Affine Maximal Graph -- 1.1.3 The Affine Bernstein Problem -- 1.1.4 Connection with the Constant Scalar Curvature Problem -- 1.1.5 The First Boundary Value Problem -- 1.1.6 The Second Boundary Value Problem of the Prescribed Affine Mean Curvature Equation -- 1.1.7 Solvability of the Second Boundary Value Problem -- 1.2 Existence of Solution to the Second Boundary Value Problem -- 1.2.1 Existence of Solution via Degree Theory and A Priori Estimates -- 1.2.2 Several Boundary Regularity Results for Monge-Ampère and Linearized Monge-Ampère Equations -- 1.3 Proof of Global W4,p and C4,α Estimates -- 1.3.1 Test Functions -- 1.3.2 L1 Bound and Lower Bound on the Hessian Determinant -- 1.3.3 Gradient Bound -- 1.3.4 Legendre Transform and Upper Bound on Hessian Determinant -- References -- 2 The Linearized Monge-Ampère Equation -- 2.1 The Linearized Monge-Ampère Equation and Interior Regularity of Its Solution -- 2.1.1 The Linearized Monge-Ampère Equation -- 2.1.2 Linearized Monge-Ampère Equations in Contexts -- 2.1.3 Difficulties and Expected Regularity -- 2.1.4 Affine Invariance Property -- 2.1.5 Krylov-Safonov's Harnack Inequality -- 2.1.6 Harnack Inequality for the Linearized Monge-Ampère Equation -- 2.2 Interior Harnack and Hölder Estimates for Linearized Monge-Ampère -- 2.2.1 Proof of Caffarelli-Gutiérrez's Harnack Inequality -- 2.2.2 Proof of the Interior Hölder Estimates for the Inhomogeneous Linearized Monge-Ampère Equation -- 2.3 Global Hölder Estimates for the Linearized Monge-Ampère Equations.
2.3.1 Boundary Hölder Continuity for Solutions of Non-uniformly Elliptic Equations -- 2.3.2 Savin's Localization Theorem -- 2.3.3 Proof of Global Hölder Estimates for the Linearized Monge-Ampère Equation -- References -- 3 The Monge-Ampère Equation -- 3.1 Maximum Principles and Sections of the Monge-Ampère Equation -- 3.1.1 Basic Definitions -- 3.1.2 Examples and Properties of the Normal Mapping and the Monge-Ampère Measure -- 3.1.3 Maximum Principles -- 3.1.4 John's Lemma -- 3.1.5 Comparison Principle and Applications -- 3.1.6 The Dirichlet Problem and Perron's Method -- 3.1.7 Sections of Convex Functions -- 3.2 Geometry of Sections of Solutions to the Monge-Ampère Equation -- 3.2.1 Compactness of Solutions to the Monge-Ampère Equation -- 3.2.2 Caffarelli's Localization Theorem -- 3.2.3 Strict Convexity and C1,α Estimates -- 3.2.4 Engulfing Property of Sections -- Appendix A: Auxiliary Lemmas -- Appendix B: A Heuristic Explanation of Trudinger-Wang's Non-smooth Example -- References -- Part II Dynamical Properties of Hamilton-Jacobi Equations via the Nonlinear Adjoint Method: Large Time Behavior and Discounted Approximation -- Introduction -- Notations -- References -- 4 Ergodic Problems for Hamilton-Jacobi Equations -- 4.1 Motivation -- 4.2 Existence of Solutions to Ergodic Problems -- References -- 5 Large Time Asymptotics of Hamilton-Jacobi Equations -- 5.1 A Brief Introduction -- 5.2 First-Order Case with Separable Hamiltonians -- 5.2.1 First Example -- 5.2.2 Second Example -- 5.3 First-Order Case with General Hamiltonians -- 5.3.1 Formal Calculation -- 5.3.2 Regularizing Process -- 5.3.3 Conservation of Energy and a Key Observation -- 5.3.4 Proof of Key Estimates -- 5.4 Degenerate Viscous Case -- 5.5 Asymptotic Profile of the First-Order Case -- 5.6 Viscous Case -- 5.7 Some Other Directions and Open Questions -- References. 6 Selection Problems in the Discounted Approximation Procedure -- 6.1 Selection Problems -- 6.1.1 Examples on Nonuniqueness of Ergodic Problems -- 6.1.2 Discounted Approximation -- 6.2 Regularizing Process -- 6.2.1 Regularizing Process and Construction of M -- 6.2.2 Stochastic Mather Measures -- 6.2.3 Key Estimates -- 6.3 Proof of Theorem 6.5 -- 6.4 Proof of the Commutation Lemma -- 6.5 Applications -- 6.5.1 Limit of u in Example 6.1 -- 6.5.2 Limit of u in Examples 6.3, 6.4 -- 6.6 Some Other Directions and Open Questions -- 6.6.1 Discounted Approximation Procedure -- 6.6.2 Vanishing Viscosity Procedure -- 6.6.3 Selection of Mather Measures -- References -- 7 Appendix of Part II -- 7.1 Motivation and Examples -- 7.1.1 Front Propagation Problems -- 7.1.2 Optimal Control Problems -- 7.1.2.1 Inviscid Cases -- 7.1.2.2 Viscous Cases -- 7.2 Definitions -- 7.3 Consistency -- 7.4 Comparison Principle and Uniqueness -- 7.5 Stability -- 7.6 Lipschitz Estimates -- 7.7 The Perron Method -- References. |
| Record Nr. | UNINA-9910257380003321 |
Le Nam Q
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||