top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Rotating thermal flows in natural and industrial processes [[electronic resource] /] / Marcello Lappa
Rotating thermal flows in natural and industrial processes [[electronic resource] /] / Marcello Lappa
Autore Lappa Marcello
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (542 p.)
Disciplina 536/.2
Soggetto topico Heat - Transmission
Rotating masses of fluid
ISBN 1-283-64505-X
1-118-34238-0
1-118-34240-2
1-118-34241-0
Classificazione SCI065000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Rotating Thermal Flows; Contents; Preface; Acknowledgements; Chapter 1 Equations, General Concepts and Nondimensional Numbers; 1.1 The Navier-Stokes and Energy Equations; 1.1.1 The Continuity Equation; 1.1.2 The Momentum Equation; 1.1.3 The Total Energy Equation; 1.1.4 The Budget of Internal Energy; 1.1.5 Closure Models; 1.2 Some Considerations about the Dynamics of Vorticity; 1.2.1 Vorticity and Circulation; 1.2.2 Vorticity in Two Dimensions; 1.2.3 Vorticity Over a Spherical Surface; 1.2.4 The Curl of the Momentum Equation; 1.3 Incompressible Formulation; 1.4 Buoyancy Convection
1.4.1 The Boussinesq Model 1.4.2 The Grashof and Rayleigh Numbers; 1.5 Surface-Tension-Driven Flows; 1.5.1 Stress Balance; 1.5.2 The Reynolds and Marangoni Numbers; 1.5.3 The Microgravity Environment; 1.6 Rotating Systems: The Coriolis and Centrifugal Forces; 1.6.1 Generalized Gravity; 1.6.2 The Coriolis, Taylor and Rossby Numbers; 1.6.3 The Geostrophic Flow Approximation; 1.6.4 The Taylor-Proudman Theorem; 1.6.5 Centrifugal and Stratification Effects: The Froude Number; 1.6.6 The Rossby Deformation Radius; 1.7 Some Elementary Effects due to Rotation
1.7.1 The Origin of Cyclonic and Anticyclonic flows 1.7.2 The Ekman Layer; 1.7.3 Ekman Spiral; 1.7.4 Ekman Pumping; 1.7.5 The Stewartson Layer; Chapter 2 Rayleigh-B ́enard Convection with Rotation; 2.1 Rayleigh-B ́enard Convection with Rotation in Infinite Layers; 2.1.1 Linear Stability Analysis; 2.1.2 Asymptotic Analysis; 2.2 The Kuppers-Lortz Instability and Domain Chaos; 2.3 Patterns with Squares; 2.4 Typical Phenomena for Pr = 1 and Small Values of the Coriolis Number; 2.4.1 Spiral Defect Chaos and Chiral Symmetry; 2.4.2 The Interplay between the Busse Balloon and the KL Instability
2.5 The Low-Pr Hopf Bifurcation and Mixed States 2.5.1 Standing and Travelling Rolls; 2.5.2 Patterns with the Symmetry of Square and Hexagonal Lattices; 2.5.3 Other Asymptotic Analyses; 2.5.4 Nature and Topology of the Bifurcation Lines in the Space of Parameters (τ,Pr); 2.6 Laterally Confined Convection; 2.6.1 The First Bifurcation and Wall Modes; 2.6.2 The Second Bifurcation and Bulk Convection; 2.6.3 Square Patterns Driven by Nonlinear Interactions between Bulk and Wall Modes; 2.6.4 Square Patterns as a Nonlinear Combination of Bulk Fourier Eigenmodes; 2.6.5 Higher-Order Bifurcations
2.7 Centrifugal Effects 2.7.1 Stably Thermally Stratified Systems; 2.7.2 Interacting Thermogravitational and Centrifugally Driven Flows; 2.7.3 The Effect of the Centrifugal Force on Domain Chaos; 2.8 Turbulent Rotating RB Convection; 2.8.1 The Origin of the Large-scale Circulation; 2.8.2 Rotating Vortical Plumes; 2.8.3 Classification of Flow Regimes; 2.8.4 Suppression of Large-scale Flow and Heat Transfer Enhancement; 2.8.5 Prandtl Number Effects; Chapter 3 Spherical Shells, Rossby Waves and Centrifugally Driven Thermal Convection; 3.1 The Coriolis Effect in Atmosphere Dynamics
3.1.1 The Origin of the Zonal Winds
Record Nr. UNINA-9910138869703321
Lappa Marcello  
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rotating thermal flows in natural and industrial processes [[electronic resource] /] / Marcello Lappa
Rotating thermal flows in natural and industrial processes [[electronic resource] /] / Marcello Lappa
Autore Lappa Marcello
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (542 p.)
Disciplina 536/.2
Soggetto topico Heat - Transmission
Rotating masses of fluid
ISBN 1-283-64505-X
1-118-34238-0
1-118-34240-2
1-118-34241-0
Classificazione SCI065000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Rotating Thermal Flows; Contents; Preface; Acknowledgements; Chapter 1 Equations, General Concepts and Nondimensional Numbers; 1.1 The Navier-Stokes and Energy Equations; 1.1.1 The Continuity Equation; 1.1.2 The Momentum Equation; 1.1.3 The Total Energy Equation; 1.1.4 The Budget of Internal Energy; 1.1.5 Closure Models; 1.2 Some Considerations about the Dynamics of Vorticity; 1.2.1 Vorticity and Circulation; 1.2.2 Vorticity in Two Dimensions; 1.2.3 Vorticity Over a Spherical Surface; 1.2.4 The Curl of the Momentum Equation; 1.3 Incompressible Formulation; 1.4 Buoyancy Convection
1.4.1 The Boussinesq Model 1.4.2 The Grashof and Rayleigh Numbers; 1.5 Surface-Tension-Driven Flows; 1.5.1 Stress Balance; 1.5.2 The Reynolds and Marangoni Numbers; 1.5.3 The Microgravity Environment; 1.6 Rotating Systems: The Coriolis and Centrifugal Forces; 1.6.1 Generalized Gravity; 1.6.2 The Coriolis, Taylor and Rossby Numbers; 1.6.3 The Geostrophic Flow Approximation; 1.6.4 The Taylor-Proudman Theorem; 1.6.5 Centrifugal and Stratification Effects: The Froude Number; 1.6.6 The Rossby Deformation Radius; 1.7 Some Elementary Effects due to Rotation
1.7.1 The Origin of Cyclonic and Anticyclonic flows 1.7.2 The Ekman Layer; 1.7.3 Ekman Spiral; 1.7.4 Ekman Pumping; 1.7.5 The Stewartson Layer; Chapter 2 Rayleigh-B ́enard Convection with Rotation; 2.1 Rayleigh-B ́enard Convection with Rotation in Infinite Layers; 2.1.1 Linear Stability Analysis; 2.1.2 Asymptotic Analysis; 2.2 The Kuppers-Lortz Instability and Domain Chaos; 2.3 Patterns with Squares; 2.4 Typical Phenomena for Pr = 1 and Small Values of the Coriolis Number; 2.4.1 Spiral Defect Chaos and Chiral Symmetry; 2.4.2 The Interplay between the Busse Balloon and the KL Instability
2.5 The Low-Pr Hopf Bifurcation and Mixed States 2.5.1 Standing and Travelling Rolls; 2.5.2 Patterns with the Symmetry of Square and Hexagonal Lattices; 2.5.3 Other Asymptotic Analyses; 2.5.4 Nature and Topology of the Bifurcation Lines in the Space of Parameters (τ,Pr); 2.6 Laterally Confined Convection; 2.6.1 The First Bifurcation and Wall Modes; 2.6.2 The Second Bifurcation and Bulk Convection; 2.6.3 Square Patterns Driven by Nonlinear Interactions between Bulk and Wall Modes; 2.6.4 Square Patterns as a Nonlinear Combination of Bulk Fourier Eigenmodes; 2.6.5 Higher-Order Bifurcations
2.7 Centrifugal Effects 2.7.1 Stably Thermally Stratified Systems; 2.7.2 Interacting Thermogravitational and Centrifugally Driven Flows; 2.7.3 The Effect of the Centrifugal Force on Domain Chaos; 2.8 Turbulent Rotating RB Convection; 2.8.1 The Origin of the Large-scale Circulation; 2.8.2 Rotating Vortical Plumes; 2.8.3 Classification of Flow Regimes; 2.8.4 Suppression of Large-scale Flow and Heat Transfer Enhancement; 2.8.5 Prandtl Number Effects; Chapter 3 Spherical Shells, Rossby Waves and Centrifugally Driven Thermal Convection; 3.1 The Coriolis Effect in Atmosphere Dynamics
3.1.1 The Origin of the Zonal Winds
Record Nr. UNINA-9910818161403321
Lappa Marcello  
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Autore Lappa Marcello
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2009
Descrizione fisica 1 online resource (692 p.)
Disciplina 541.36
620.11296
Soggetto topico Thermal conductivity
Density currents
Viscous flow
Fluid dynamics
ISBN 1-282-37960-7
9786612379604
0-470-74998-9
0-470-74999-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Convection; Contents; Preface; Acknowledgements; 1 Equations, General Concepts and Methods of Analysis; 1.1 Pattern Formation and Nonlinear Dynamics; 1.1.1 Some Fundamental Concepts: Pattern, Interrelation and Scale; 1.1.2 PDEs, Symmetry and Nonequilibrium Phenomena; 1.2 The Navier-Stokes Equations; 1.2.1 A Satisfying Microscopic Derivation of the Balance Equations; 1.2.2 A Statistical Mechanical Theory of Transport Processes; 1.2.3 The Continuity Equation; 1.2.4 The Momentum Equation; 1.2.5 The Total Energy Equation; 1.2.6 The Budget of Internal Energy; 1.2.7 Newtonian Fluids
1.2.8 Some Considerations About the Dynamics of Vorticity1.2.9 Incompressible Formulation of the Balance Equations; 1.2.10 Nondimensional Form of the Equations for Thermal Problems; 1.3 Energy Equality and Dissipative Structures; 1.4 Flow Stability, Bifurcations and Transition to Chaos; 1.5 Linear Stability Analysis: Principles and Methods; 1.5.1 Conditional Stability and Infinitesimal Disturbances; 1.5.2 The Exponential Matrix and the Eigenvalue Problem; 1.5.3 Linearization of the Navier-Stokes Equations
1.5.4 A Simple Example: The Stability of a Parallel Flow with an Inflectional Velocity Profile1.5.5 Weaknesses and Limits of the Linear Stability Approach; 1.6 Energy Stability Theory; 1.6.1 A Global Budget for the Generalized Disturbance Energy; 1.6.2 The Extremum Problem; 1.7 Numerical Integration of the Navier-Stokes Equations; 1.7.1 Vorticity Methods; 1.7.2 Primitive Variables Methods; 1.8 Some Universal Properties of Chaotic States; 1.8.1 Feigenbaum, Ruelle-Takens and Manneville-Pomeau Scenarios; 1.8.2 Phase Trajectories, Attractors and Strange Attractors
1.8.3 The Lorenz Model and the Butterfly Effect1.8.4 A Possible Quantification of SIC: The Lyapunov Spectrum; 1.8.5 The Mandelbrot Set: The Ubiquitous Connection Between Chaos and Fractals; 1.9 The Maxwell Equations; 2 Classical Models, Characteristic Numbers and Scaling Arguments; 2.1 Buoyancy Convection and the Boussinesq Model; 2.2 Convection in Space; 2.2.1 A Definition of Microgravity; 2.2.2 Experiments in Space; 2.2.3 Surface Tension-driven Flows; 2.2.4 Acceleration Disturbances on Orbiting Platforms and Vibrational Flows; 2.3 Marangoni Flow
2.3.1 The Genesis and Relevant Nondimensional Numbers2.3.2 Microzone Facilities and Microscale Experimentation; 2.3.3 A Paradigm Model: The Liquid Bridge; 2.4 Exact Solutions of the Navier-Stokes Equations for Thermal Problems; 2.4.1 Thermogravitational Convection: The Hadley Flow; 2.4.2 Marangoni Flow; 2.4.3 Hybrid States; 2.4.4 General Properties; 2.4.5 The Infinitely Long Liquid Bridge; 2.4.6 Inclined Systems; 2.5 Conductive, Transition and Boundary-layer Regimes; 3 Examples of Thermal Fluid Convection and Pattern Formation in Nature and Technology
3.1 Technological Processes: Small-scale Laboratory and Industrial Setups
Record Nr. UNINA-9910139959803321
Lappa Marcello  
Hoboken, N.J., : Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Autore Lappa Marcello
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2009
Descrizione fisica 1 online resource (692 p.)
Disciplina 541.36
620.11296
Soggetto topico Thermal conductivity
Density currents
Viscous flow
Fluid dynamics
ISBN 1-282-37960-7
9786612379604
0-470-74998-9
0-470-74999-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Convection; Contents; Preface; Acknowledgements; 1 Equations, General Concepts and Methods of Analysis; 1.1 Pattern Formation and Nonlinear Dynamics; 1.1.1 Some Fundamental Concepts: Pattern, Interrelation and Scale; 1.1.2 PDEs, Symmetry and Nonequilibrium Phenomena; 1.2 The Navier-Stokes Equations; 1.2.1 A Satisfying Microscopic Derivation of the Balance Equations; 1.2.2 A Statistical Mechanical Theory of Transport Processes; 1.2.3 The Continuity Equation; 1.2.4 The Momentum Equation; 1.2.5 The Total Energy Equation; 1.2.6 The Budget of Internal Energy; 1.2.7 Newtonian Fluids
1.2.8 Some Considerations About the Dynamics of Vorticity1.2.9 Incompressible Formulation of the Balance Equations; 1.2.10 Nondimensional Form of the Equations for Thermal Problems; 1.3 Energy Equality and Dissipative Structures; 1.4 Flow Stability, Bifurcations and Transition to Chaos; 1.5 Linear Stability Analysis: Principles and Methods; 1.5.1 Conditional Stability and Infinitesimal Disturbances; 1.5.2 The Exponential Matrix and the Eigenvalue Problem; 1.5.3 Linearization of the Navier-Stokes Equations
1.5.4 A Simple Example: The Stability of a Parallel Flow with an Inflectional Velocity Profile1.5.5 Weaknesses and Limits of the Linear Stability Approach; 1.6 Energy Stability Theory; 1.6.1 A Global Budget for the Generalized Disturbance Energy; 1.6.2 The Extremum Problem; 1.7 Numerical Integration of the Navier-Stokes Equations; 1.7.1 Vorticity Methods; 1.7.2 Primitive Variables Methods; 1.8 Some Universal Properties of Chaotic States; 1.8.1 Feigenbaum, Ruelle-Takens and Manneville-Pomeau Scenarios; 1.8.2 Phase Trajectories, Attractors and Strange Attractors
1.8.3 The Lorenz Model and the Butterfly Effect1.8.4 A Possible Quantification of SIC: The Lyapunov Spectrum; 1.8.5 The Mandelbrot Set: The Ubiquitous Connection Between Chaos and Fractals; 1.9 The Maxwell Equations; 2 Classical Models, Characteristic Numbers and Scaling Arguments; 2.1 Buoyancy Convection and the Boussinesq Model; 2.2 Convection in Space; 2.2.1 A Definition of Microgravity; 2.2.2 Experiments in Space; 2.2.3 Surface Tension-driven Flows; 2.2.4 Acceleration Disturbances on Orbiting Platforms and Vibrational Flows; 2.3 Marangoni Flow
2.3.1 The Genesis and Relevant Nondimensional Numbers2.3.2 Microzone Facilities and Microscale Experimentation; 2.3.3 A Paradigm Model: The Liquid Bridge; 2.4 Exact Solutions of the Navier-Stokes Equations for Thermal Problems; 2.4.1 Thermogravitational Convection: The Hadley Flow; 2.4.2 Marangoni Flow; 2.4.3 Hybrid States; 2.4.4 General Properties; 2.4.5 The Infinitely Long Liquid Bridge; 2.4.6 Inclined Systems; 2.5 Conductive, Transition and Boundary-layer Regimes; 3 Examples of Thermal Fluid Convection and Pattern Formation in Nature and Technology
3.1 Technological Processes: Small-scale Laboratory and Industrial Setups
Record Nr. UNINA-9910829961403321
Lappa Marcello  
Hoboken, N.J., : Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Thermal convection [[electronic resource] ] : patterns, evolution, and stability (historical background and current status) / / Marcello Lappa
Autore Lappa Marcello
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2009
Descrizione fisica 1 online resource (692 p.)
Disciplina 541.36
620.11296
Soggetto topico Thermal conductivity
Density currents
Viscous flow
Fluid dynamics
ISBN 1-282-37960-7
9786612379604
0-470-74998-9
0-470-74999-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Convection; Contents; Preface; Acknowledgements; 1 Equations, General Concepts and Methods of Analysis; 1.1 Pattern Formation and Nonlinear Dynamics; 1.1.1 Some Fundamental Concepts: Pattern, Interrelation and Scale; 1.1.2 PDEs, Symmetry and Nonequilibrium Phenomena; 1.2 The Navier-Stokes Equations; 1.2.1 A Satisfying Microscopic Derivation of the Balance Equations; 1.2.2 A Statistical Mechanical Theory of Transport Processes; 1.2.3 The Continuity Equation; 1.2.4 The Momentum Equation; 1.2.5 The Total Energy Equation; 1.2.6 The Budget of Internal Energy; 1.2.7 Newtonian Fluids
1.2.8 Some Considerations About the Dynamics of Vorticity1.2.9 Incompressible Formulation of the Balance Equations; 1.2.10 Nondimensional Form of the Equations for Thermal Problems; 1.3 Energy Equality and Dissipative Structures; 1.4 Flow Stability, Bifurcations and Transition to Chaos; 1.5 Linear Stability Analysis: Principles and Methods; 1.5.1 Conditional Stability and Infinitesimal Disturbances; 1.5.2 The Exponential Matrix and the Eigenvalue Problem; 1.5.3 Linearization of the Navier-Stokes Equations
1.5.4 A Simple Example: The Stability of a Parallel Flow with an Inflectional Velocity Profile1.5.5 Weaknesses and Limits of the Linear Stability Approach; 1.6 Energy Stability Theory; 1.6.1 A Global Budget for the Generalized Disturbance Energy; 1.6.2 The Extremum Problem; 1.7 Numerical Integration of the Navier-Stokes Equations; 1.7.1 Vorticity Methods; 1.7.2 Primitive Variables Methods; 1.8 Some Universal Properties of Chaotic States; 1.8.1 Feigenbaum, Ruelle-Takens and Manneville-Pomeau Scenarios; 1.8.2 Phase Trajectories, Attractors and Strange Attractors
1.8.3 The Lorenz Model and the Butterfly Effect1.8.4 A Possible Quantification of SIC: The Lyapunov Spectrum; 1.8.5 The Mandelbrot Set: The Ubiquitous Connection Between Chaos and Fractals; 1.9 The Maxwell Equations; 2 Classical Models, Characteristic Numbers and Scaling Arguments; 2.1 Buoyancy Convection and the Boussinesq Model; 2.2 Convection in Space; 2.2.1 A Definition of Microgravity; 2.2.2 Experiments in Space; 2.2.3 Surface Tension-driven Flows; 2.2.4 Acceleration Disturbances on Orbiting Platforms and Vibrational Flows; 2.3 Marangoni Flow
2.3.1 The Genesis and Relevant Nondimensional Numbers2.3.2 Microzone Facilities and Microscale Experimentation; 2.3.3 A Paradigm Model: The Liquid Bridge; 2.4 Exact Solutions of the Navier-Stokes Equations for Thermal Problems; 2.4.1 Thermogravitational Convection: The Hadley Flow; 2.4.2 Marangoni Flow; 2.4.3 Hybrid States; 2.4.4 General Properties; 2.4.5 The Infinitely Long Liquid Bridge; 2.4.6 Inclined Systems; 2.5 Conductive, Transition and Boundary-layer Regimes; 3 Examples of Thermal Fluid Convection and Pattern Formation in Nature and Technology
3.1 Technological Processes: Small-scale Laboratory and Industrial Setups
Record Nr. UNINA-9910841686603321
Lappa Marcello  
Hoboken, N.J., : Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal Flows
Thermal Flows
Autore Lappa Marcello
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (232 p.)
Soggetto topico Research & information: general
Physics
Soggetto non controllato coating flow
free surface
boundary layer
stress singularity
matched asymptotic expansions
computational fluid dynamics
turbulence
rotating thermal convection
Rayleigh-Bénard
heat enhancement
nanofluid
circular pipe
twisted tape
porous media
metal foam
convection-driven dynamos
numerical simulations
bistability
mean-field magnetohydrodynamics
spherical shells
stochastic equations
equivalence of measures
nature of turbulence
critical Reynolds number
thermovibrational convection
gravity modulation
thermofluid-dynamic distortions
patterning behavior
stratified mixing layer
non-modal instability
Kelvin-Helmholtz instability
Holmboe instability
rotating thermal magnetoconvection
linear onset
sphere
Rayleigh-Bénard convection
time periodical cooling
Lattice Boltzmann method
thermocapillary-driven convection
half-zone liquid bridges
particles
coherent structures
particle accumulation structure (PAS)
high Prandtl number fluids
plane layer
circular translational vibrations
thermal vibrational convection
convective patterns
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566480903321
Lappa Marcello  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui