top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Autore Lambrechts Pascal <1964->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2013
Descrizione fisica 1 online resource (130 p.)
Disciplina 514/.24
Collana Memoirs of the American Mathematical Society
Soggetto topico Homotopy theory
Operads
Loop spaces
Soggetto genere / forma Electronic books.
ISBN 1-4704-1669-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Chapter 1. Introduction""; ""1. Plan of the paper""; ""Chapter 2. Notation, linear orders, weak partitions, and operads""; ""2.1. Notation""; ""2.2. Linear orders""; ""2.3. Weak ordered partitions""; ""2.4. Operads and cooperads""; ""Chapter 3. CDGA models for operads""; ""Chapter 4. Real homotopy theory of semi-algebraic sets""; ""Chapter 5. The Fulton-MacPherson operad""; ""5.1. Compactification of configuration spaces in â??^{â??}""; ""5.2. The operad structure""; ""5.3. The canonical projections""
""5.4. Decomposition of the boundary of [ ] into codimension 0 faces""""5.5. Spaces of singular configurations""; ""5.6. Pullback of a canonical projection along an operad structure map""; ""5.7. Decomposition of the fiberwise boundary along a canonical projection""; ""5.8. Orientation of [ ]""; ""5.9. Proof of the local triviality of the canonical projections""; ""Chapter 6. The CDGAs of admissible diagrams""; ""6.1. Diagrams""; ""6.2. The module ( ) of diagrams""; ""6.3. Product of diagrams""; ""6.4. A differential on the space of diagrams""
""6.5. The CDGA ( ) of admissible diagrams""""Chapter 7. Cooperad structure on the spaces of (admissible) diagrams""; ""7.1. Construction of the cooperad structure maps Î?_{ } and Î?_{ }""; ""7.2. Î?_{ } and Î?_{ } are morphisms of algebras""; ""7.3. Î?_{ } is a chain map""; ""7.4. Proof that the cooperad structure is well-defined""; ""Chapter 8. Equivalence of the cooperads and â??*( [â??])""; ""Chapter 9. The Kontsevich configuration space integrals""; ""9.1. Construction of the Kontsevich configuration space integral ""; ""9.2. is a morphism of algebras""
""9.3. Vanishing of on non-admissible diagrams""""9.4. and are chain maps""; ""9.5. and are almost morphisms of cooperads""; ""Chapter 10. Proofs of the formality theorems""; ""Index of notation""; ""Bibliography""
Record Nr. UNINA-9910481019403321
Lambrechts Pascal <1964->  
Providence, Rhode Island : , : American Mathematical Society, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Autore Lambrechts Pascal <1964->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2013
Descrizione fisica 1 online resource (130 p.)
Disciplina 514/.24
Collana Memoirs of the American Mathematical Society
Soggetto topico Homotopy theory
Operads
Loop spaces
ISBN 1-4704-1669-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Chapter 1. Introduction""; ""1. Plan of the paper""; ""Chapter 2. Notation, linear orders, weak partitions, and operads""; ""2.1. Notation""; ""2.2. Linear orders""; ""2.3. Weak ordered partitions""; ""2.4. Operads and cooperads""; ""Chapter 3. CDGA models for operads""; ""Chapter 4. Real homotopy theory of semi-algebraic sets""; ""Chapter 5. The Fulton-MacPherson operad""; ""5.1. Compactification of configuration spaces in â??^{â??}""; ""5.2. The operad structure""; ""5.3. The canonical projections""
""5.4. Decomposition of the boundary of [ ] into codimension 0 faces""""5.5. Spaces of singular configurations""; ""5.6. Pullback of a canonical projection along an operad structure map""; ""5.7. Decomposition of the fiberwise boundary along a canonical projection""; ""5.8. Orientation of [ ]""; ""5.9. Proof of the local triviality of the canonical projections""; ""Chapter 6. The CDGAs of admissible diagrams""; ""6.1. Diagrams""; ""6.2. The module ( ) of diagrams""; ""6.3. Product of diagrams""; ""6.4. A differential on the space of diagrams""
""6.5. The CDGA ( ) of admissible diagrams""""Chapter 7. Cooperad structure on the spaces of (admissible) diagrams""; ""7.1. Construction of the cooperad structure maps Î?_{ } and Î?_{ }""; ""7.2. Î?_{ } and Î?_{ } are morphisms of algebras""; ""7.3. Î?_{ } is a chain map""; ""7.4. Proof that the cooperad structure is well-defined""; ""Chapter 8. Equivalence of the cooperads and â??*( [â??])""; ""Chapter 9. The Kontsevich configuration space integrals""; ""9.1. Construction of the Kontsevich configuration space integral ""; ""9.2. is a morphism of algebras""
""9.3. Vanishing of on non-admissible diagrams""""9.4. and are chain maps""; ""9.5. and are almost morphisms of cooperads""; ""Chapter 10. Proofs of the formality theorems""; ""Index of notation""; ""Bibliography""
Record Nr. UNINA-9910787195203321
Lambrechts Pascal <1964->  
Providence, Rhode Island : , : American Mathematical Society, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Formality of the little N-disks operad / / Pascal Lambrechts, Ismar Volić
Autore Lambrechts Pascal <1964->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2013
Descrizione fisica 1 online resource (130 p.)
Disciplina 514/.24
Collana Memoirs of the American Mathematical Society
Soggetto topico Homotopy theory
Operads
Loop spaces
ISBN 1-4704-1669-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Chapter 1. Introduction""; ""1. Plan of the paper""; ""Chapter 2. Notation, linear orders, weak partitions, and operads""; ""2.1. Notation""; ""2.2. Linear orders""; ""2.3. Weak ordered partitions""; ""2.4. Operads and cooperads""; ""Chapter 3. CDGA models for operads""; ""Chapter 4. Real homotopy theory of semi-algebraic sets""; ""Chapter 5. The Fulton-MacPherson operad""; ""5.1. Compactification of configuration spaces in â??^{â??}""; ""5.2. The operad structure""; ""5.3. The canonical projections""
""5.4. Decomposition of the boundary of [ ] into codimension 0 faces""""5.5. Spaces of singular configurations""; ""5.6. Pullback of a canonical projection along an operad structure map""; ""5.7. Decomposition of the fiberwise boundary along a canonical projection""; ""5.8. Orientation of [ ]""; ""5.9. Proof of the local triviality of the canonical projections""; ""Chapter 6. The CDGAs of admissible diagrams""; ""6.1. Diagrams""; ""6.2. The module ( ) of diagrams""; ""6.3. Product of diagrams""; ""6.4. A differential on the space of diagrams""
""6.5. The CDGA ( ) of admissible diagrams""""Chapter 7. Cooperad structure on the spaces of (admissible) diagrams""; ""7.1. Construction of the cooperad structure maps Î?_{ } and Î?_{ }""; ""7.2. Î?_{ } and Î?_{ } are morphisms of algebras""; ""7.3. Î?_{ } is a chain map""; ""7.4. Proof that the cooperad structure is well-defined""; ""Chapter 8. Equivalence of the cooperads and â??*( [â??])""; ""Chapter 9. The Kontsevich configuration space integrals""; ""9.1. Construction of the Kontsevich configuration space integral ""; ""9.2. is a morphism of algebras""
""9.3. Vanishing of on non-admissible diagrams""""9.4. and are chain maps""; ""9.5. and are almost morphisms of cooperads""; ""Chapter 10. Proofs of the formality theorems""; ""Index of notation""; ""Bibliography""
Record Nr. UNINA-9910809133203321
Lambrechts Pascal <1964->  
Providence, Rhode Island : , : American Mathematical Society, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui