top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fatigue damage / / Christian Lalanne
Fatigue damage / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (543 p.)
Disciplina 620.1126
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Materials - Fatigue
Mechanical engineering
ISBN 1-5231-1094-5
1-118-93120-3
1-118-93118-1
1-118-93119-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Concepts of Material Fatigue; 1.1. Introduction; 1.1.1. Reminders on the strength of materials; 1.1.2. Fatigue; 1.2. Types of dynamic loads (or stresses); 1.2.1. Cyclic stress; 1.2.2. Alternating stress; 1.2.3. Repeated stress; 1.2.4. Combined steady and cyclic stress; 1.2.5. Skewed alternating stress; 1.2.6. Random and transitory stresses; 1.3. Damage arising from fatigue; 1.4. Characterization of endurance of materials; 1.4.1. S-N curve; 1.4.2. Influence of the average stress on the S-N curve
1.4.3. Statistical aspect1.4.4. Distribution laws of endurance; 1.4.5. Distribution laws of fatigue strength; 1.4.6. Relation between fatigue limit and static properties of materials; 1.4.7. Analytical representations of S-N curve; 1.5. Factors of influence; 1.5.1. General; 1.5.2. Scale; 1.5.3. Overloads; 1.5.4. Frequency of stresses; 1.5.5. Types of stresses; 1.5.6. Non-zero mean stress; 1.6. Other representations of S-N curves; 1.6.1. Haigh diagram; 1.6.2. Statistical representation of Haigh diagram; 1.7. Prediction of fatigue life of complex structures; 1.8. Fatigue in composite materials
Chapter 2. Accumulation of Fatigue Damage2.1. Evolution of fatigue damage; 2.2. Classification of various laws of accumulation; 2.3. Miner's method; 2.3.1. Miner's rule; 2.3.2. Scatter of damage to failure as evaluated by Miner; 2.3.3. Validity of Miner's law of accumulation of damage in case of random stress; 2.4. Modified Miner's theory; 2.4.1. Principle; 2.4.2. Accumulation of damage using modified Miner's rule; 2.5. Henry's method; 2.6. Modified Henry's method; 2.7. Corten and Dolan's method; 2.8. Other theories; Chapter 3. Counting Methods for Analyzing Random Time History; 3.1. General
3.2. Peak count method3.2.1. Presentation of method; 3.2.2. Derived methods; 3.2.3. Range-restricted peak count method; 3.2.4. Level-restricted peak count method; 3.3. Peak between mean-crossing count method; 3.3.1. Presentation of method; 3.3.2. Elimination of small variations; 3.4. Range count method; 3.4.1. Presentation of method; 3.4.2. Elimination of small variations; 3.5. Range-mean count method; 3.5.1. Presentation of method; 3.5.2. Elimination of small variations; 3.6. Range-pair count method; 3.7. Hayes' counting method; 3.8. Ordered overall range counting method
3.9. Level-crossing count method3.10. Peak valley peak counting method; 3.11. Fatigue-meter counting method; 3.12. Rainflow counting method; 3.12.1. Principle of method; 3.12.2. Subroutine for rainflow counting; 3.13. NRL (National Luchtvaart Laboratorium) counting method; 3.14. Evaluation of time spent at a given level; 3.15. Influence of levels of load below fatigue limit on fatigue life; 3.16. Test acceleration; 3.17. Presentation of fatigue curves determined by random vibration tests; Chapter 4. Fatigue Damage by One-degree-of-freedom Mechanical System; 4.1. Introduction
4.2. Calculation of fatigue damage due to signal versus time
Record Nr. UNINA-9910132211203321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue damage / / Christian Lalanne
Fatigue damage / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (543 p.)
Disciplina 620.1126
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Materials - Fatigue
Mechanical engineering
ISBN 1-5231-1094-5
1-118-93120-3
1-118-93118-1
1-118-93119-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Concepts of Material Fatigue; 1.1. Introduction; 1.1.1. Reminders on the strength of materials; 1.1.2. Fatigue; 1.2. Types of dynamic loads (or stresses); 1.2.1. Cyclic stress; 1.2.2. Alternating stress; 1.2.3. Repeated stress; 1.2.4. Combined steady and cyclic stress; 1.2.5. Skewed alternating stress; 1.2.6. Random and transitory stresses; 1.3. Damage arising from fatigue; 1.4. Characterization of endurance of materials; 1.4.1. S-N curve; 1.4.2. Influence of the average stress on the S-N curve
1.4.3. Statistical aspect1.4.4. Distribution laws of endurance; 1.4.5. Distribution laws of fatigue strength; 1.4.6. Relation between fatigue limit and static properties of materials; 1.4.7. Analytical representations of S-N curve; 1.5. Factors of influence; 1.5.1. General; 1.5.2. Scale; 1.5.3. Overloads; 1.5.4. Frequency of stresses; 1.5.5. Types of stresses; 1.5.6. Non-zero mean stress; 1.6. Other representations of S-N curves; 1.6.1. Haigh diagram; 1.6.2. Statistical representation of Haigh diagram; 1.7. Prediction of fatigue life of complex structures; 1.8. Fatigue in composite materials
Chapter 2. Accumulation of Fatigue Damage2.1. Evolution of fatigue damage; 2.2. Classification of various laws of accumulation; 2.3. Miner's method; 2.3.1. Miner's rule; 2.3.2. Scatter of damage to failure as evaluated by Miner; 2.3.3. Validity of Miner's law of accumulation of damage in case of random stress; 2.4. Modified Miner's theory; 2.4.1. Principle; 2.4.2. Accumulation of damage using modified Miner's rule; 2.5. Henry's method; 2.6. Modified Henry's method; 2.7. Corten and Dolan's method; 2.8. Other theories; Chapter 3. Counting Methods for Analyzing Random Time History; 3.1. General
3.2. Peak count method3.2.1. Presentation of method; 3.2.2. Derived methods; 3.2.3. Range-restricted peak count method; 3.2.4. Level-restricted peak count method; 3.3. Peak between mean-crossing count method; 3.3.1. Presentation of method; 3.3.2. Elimination of small variations; 3.4. Range count method; 3.4.1. Presentation of method; 3.4.2. Elimination of small variations; 3.5. Range-mean count method; 3.5.1. Presentation of method; 3.5.2. Elimination of small variations; 3.6. Range-pair count method; 3.7. Hayes' counting method; 3.8. Ordered overall range counting method
3.9. Level-crossing count method3.10. Peak valley peak counting method; 3.11. Fatigue-meter counting method; 3.12. Rainflow counting method; 3.12.1. Principle of method; 3.12.2. Subroutine for rainflow counting; 3.13. NRL (National Luchtvaart Laboratorium) counting method; 3.14. Evaluation of time spent at a given level; 3.15. Influence of levels of load below fatigue limit on fatigue life; 3.16. Test acceleration; 3.17. Presentation of fatigue curves determined by random vibration tests; Chapter 4. Fatigue Damage by One-degree-of-freedom Mechanical System; 4.1. Introduction
4.2. Calculation of fatigue damage due to signal versus time
Record Nr. UNINA-9910811966503321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical shock / / Christian Lalanne
Mechanical shock / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (466 p.)
Disciplina 620.1125
Collana Mechanical Vibrations and Shock Analysis
Soggetto topico Mechanical engineering
Condensed matter - Computer simulation
ISBN 1-5231-1092-9
1-118-93114-9
1-118-93112-2
1-118-93113-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Shock Analysis; 1.1. Definitions; 1.1.1. Shock; 1.1.2. Transient signal; 1.1.3. Jerk; 1.1.4. Simple (or perfect) shock; 1.1.5. Half-sine shock; 1.1.6. Versed sine (or haversine) shock; 1.1.7. Terminal peak sawtooth (TPS) shock (or final peak sawtooth (FPS)); 1.1.8. Initial peak sawtooth (IPS) shock; 1.1.9. Square shock; 1.1.10. Trapezoidal shock; 1.1.11. Decaying sinusoidal pulse; 1.1.12. Bump test; 1.1.13. Pyroshock; 1.2. Analysis in the time domain; 1.3. Temporal moments; 1.4. Fourier transform
1.4.1. Definition1.4.2. Reduced Fourier transform; 1.4.3. Fourier transforms of simple shocks; 1.4.4. What represents the Fourier transform of a shock?; 1.4.5. Importance of the Fourier transform; 1.5. Energy spectrum; 1.5.1. Energy according to frequency; 1.5.2. Average energy spectrum; 1.6. Practical calculations of the Fourier transform; 1.6.1. General; 1.6.2. Case: signal not yet digitized; 1.6.3. Case: signal already digitized; 1.6.4. Adding zeros to the shock signal before the calculation of its Fourier transform; 1.6.5. Windowing; 1.7. The interest of time-frequency analysis
1.7.1. Limit of the Fourier transform1.7.2. Short term Fourier transform (STFT); 1.7.3. Wavelet transform; Chapter 2. Shock Response Spectrum; 2.1. Main principles; 2.2. Response of a linear one-degree-of-freedom system; 2.2.1. Shock defined by a force; 2.2.2. Shock defined by an acceleration; 2.2.3. Generalization; 2.2.4. Response of a one-degree-of-freedom system to simple shocks; 2.3. Definitions; 2.3.1. Response spectrum; 2.3.2. Absolute acceleration SRS; 2.3.3. Relative displacement shock spectrum; 2.3.4. Primary (or initial) positive SRS; 2.3.5. Primary (or initial) negative SRS
2.3.6. Secondary (or residual) SRS2.3.7. Positive (or maximum positive) SRS; 2.3.8. Negative (or maximum negative) SRS; 2.3.9. Maximax SRS; 2.4. Standardized response spectra; 2.4.1. Definition; 2.4.2. Half-sine pulse; 2.4.3. Versed sine pulse; 2.4.4. Terminal peak sawtooth pulse; 2.4.5. Initial peak sawtooth pulse; 2.4.6. Square pulse; 2.4.7. Trapezoidal pulse; 2.5. Choice of the type of SRS; 2.6. Comparison of the SRS of the usual simple shapes; 2.7. SRS of a shock defined by an absolute displacement of the support; 2.8. Influence of the amplitude and the duration of the shock on its SRS
2.9. Difference between SRS and extreme response spectrum (ERS)2.10. Algorithms for calculation of the SRS; 2.11. Subroutine for the calculation of the SRS; 2.12. Choice of the sampling frequency of the signal; 2.13. Example of use of the SRS; 2.14. Use of SRS for the study of systems with several degrees of freedom; 2.15. Damage boundary curve; Chapter 3. Properties of Shock Response Spectra; 3.1. Shock response spectra domains; 3.2. Properties of SRS at low frequencies; 3.2.1. General properties; 3.2.2. Shocks with zero velocity change
Record Nr. UNINA-9910132211803321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical shock / / Christian Lalanne
Mechanical shock / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (466 p.)
Disciplina 620.1125
Collana Mechanical Vibrations and Shock Analysis
Soggetto topico Mechanical engineering
Condensed matter - Computer simulation
ISBN 1-5231-1092-9
1-118-93114-9
1-118-93112-2
1-118-93113-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Shock Analysis; 1.1. Definitions; 1.1.1. Shock; 1.1.2. Transient signal; 1.1.3. Jerk; 1.1.4. Simple (or perfect) shock; 1.1.5. Half-sine shock; 1.1.6. Versed sine (or haversine) shock; 1.1.7. Terminal peak sawtooth (TPS) shock (or final peak sawtooth (FPS)); 1.1.8. Initial peak sawtooth (IPS) shock; 1.1.9. Square shock; 1.1.10. Trapezoidal shock; 1.1.11. Decaying sinusoidal pulse; 1.1.12. Bump test; 1.1.13. Pyroshock; 1.2. Analysis in the time domain; 1.3. Temporal moments; 1.4. Fourier transform
1.4.1. Definition1.4.2. Reduced Fourier transform; 1.4.3. Fourier transforms of simple shocks; 1.4.4. What represents the Fourier transform of a shock?; 1.4.5. Importance of the Fourier transform; 1.5. Energy spectrum; 1.5.1. Energy according to frequency; 1.5.2. Average energy spectrum; 1.6. Practical calculations of the Fourier transform; 1.6.1. General; 1.6.2. Case: signal not yet digitized; 1.6.3. Case: signal already digitized; 1.6.4. Adding zeros to the shock signal before the calculation of its Fourier transform; 1.6.5. Windowing; 1.7. The interest of time-frequency analysis
1.7.1. Limit of the Fourier transform1.7.2. Short term Fourier transform (STFT); 1.7.3. Wavelet transform; Chapter 2. Shock Response Spectrum; 2.1. Main principles; 2.2. Response of a linear one-degree-of-freedom system; 2.2.1. Shock defined by a force; 2.2.2. Shock defined by an acceleration; 2.2.3. Generalization; 2.2.4. Response of a one-degree-of-freedom system to simple shocks; 2.3. Definitions; 2.3.1. Response spectrum; 2.3.2. Absolute acceleration SRS; 2.3.3. Relative displacement shock spectrum; 2.3.4. Primary (or initial) positive SRS; 2.3.5. Primary (or initial) negative SRS
2.3.6. Secondary (or residual) SRS2.3.7. Positive (or maximum positive) SRS; 2.3.8. Negative (or maximum negative) SRS; 2.3.9. Maximax SRS; 2.4. Standardized response spectra; 2.4.1. Definition; 2.4.2. Half-sine pulse; 2.4.3. Versed sine pulse; 2.4.4. Terminal peak sawtooth pulse; 2.4.5. Initial peak sawtooth pulse; 2.4.6. Square pulse; 2.4.7. Trapezoidal pulse; 2.5. Choice of the type of SRS; 2.6. Comparison of the SRS of the usual simple shapes; 2.7. SRS of a shock defined by an absolute displacement of the support; 2.8. Influence of the amplitude and the duration of the shock on its SRS
2.9. Difference between SRS and extreme response spectrum (ERS)2.10. Algorithms for calculation of the SRS; 2.11. Subroutine for the calculation of the SRS; 2.12. Choice of the sampling frequency of the signal; 2.13. Example of use of the SRS; 2.14. Use of SRS for the study of systems with several degrees of freedom; 2.15. Damage boundary curve; Chapter 3. Properties of Shock Response Spectra; 3.1. Shock response spectra domains; 3.2. Properties of SRS at low frequencies; 3.2.1. General properties; 3.2.2. Shocks with zero velocity change
Record Nr. UNINA-9910827844803321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical vibration and shock analysis . Volume 1 Sinusoidal Vibration / / Christian Lalanne
Mechanical vibration and shock analysis . Volume 1 Sinusoidal Vibration / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (447 pages) : illustrations
Disciplina 530.41
Collana Mechanical Engineering and Solid Mechanics Series
Soggetto topico Condensed matter
Damping (Mechanics)
Shock (Mechanics)
Vibration
Soggetto genere / forma Electronic books.
ISBN 1-5231-1091-0
1-118-93111-4
1-118-93110-6
1-118-93109-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910208816103321
Lalanne Christian  
London ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical vibration and shock analysis . Volume 1 Sinusoidal Vibration / / Christian Lalanne
Mechanical vibration and shock analysis . Volume 1 Sinusoidal Vibration / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (447 pages) : illustrations
Disciplina 530.41
Collana Mechanical Engineering and Solid Mechanics Series
Soggetto topico Condensed matter
Damping (Mechanics)
Shock (Mechanics)
Vibration
ISBN 1-5231-1091-0
1-118-93111-4
1-118-93110-6
1-118-93109-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910823571603321
Lalanne Christian  
London ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Random vibration / / Christian Lalanne
Random vibration / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (649 p.)
Disciplina 620.11248
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Mechanical engineering - Standards
Strength of materials
ISBN 1-5231-1093-7
1-118-93117-3
1-118-93115-7
1-118-93116-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Statistical Properties of a Random Process; 1.1. Definitions; 1.1.1. Random variable; 1.1.2. Random process; 1.2. Random vibration in real environments; 1.3. Random vibration in laboratory tests; 1.4. Methods of random vibration analysis; 1.5. Distribution of instantaneous values; 1.5.1. Probability density; 1.5.2. Distribution function; 1.6. Gaussian random process; 1.7. Rayleigh distribution; 1.8. Ensemble averages: through the process; 1.8.1. n order average; 1.8.2. Centered moments
1.8.3. Variance1.8.4. Standard deviation; 1.8.5. Autocorrelation function; 1.8.6. Cross-correlation function; 1.8.7. Autocovariance; 1.8.8. Covariance; 1.8.9. Stationarity; 1.9. Temporal averages: along the process; 1.9.1. Mean; 1.9.2. Quadratic mean - rms value; 1.9.3. Moments of order n; 1.9.4. Variance - standard deviation; 1.9.5. Skewness; 1.9.6. Kurtosis; 1.9.7. Crest Factor; 1.9.8. Temporal autocorrelation function; 1.9.9. Properties of the autocorrelation function; 1.9.10. Correlation duration; 1.9.11. Cross-correlation; 1.9.12. Cross-correlation coefficient; 1.9.13. Ergodicity
1.10. Significance of the statistical analysis (ensemble or temporal)1.11. Stationary and pseudo-stationary signals; 1.13. Sliding mean; 1.14. Test of stationarity; 1.14.1. The reverse arrangements test (RAT); 1.14.2. The runs test; 1.15 Identification of shocks and/or signal problems; 1.16. Breakdown of vibratory signal into "events": choice of signal samples; 1.17. Interpretation and taking into account of environment variation; Chapter 2. Random Vibration Properties in the Frequency Domain; 2.1. Fourier transform; 2.2. Power spectral density; 2.2.1. Need; 2.2.2. Definition
2.3. Amplitude Spectral Density2.4. Cross-power spectral density; 2.5. Power spectral density of a random process; 2.6. Cross-power spectral density of two processes; 2.7. Relationship between the PSD and correlation function of a process; 2.8. Quadspectrum - cospectrum; 2.9. Definitions; 2.9.1. Broadband process; 2.9.2. White noise; 2.9.3. Band-limited white noise; 2.9.4. Narrow band process; 2.9.5. Colors of noise; 2.10. Autocorrelation function of white noise; 2.11. Autocorrelation function of band-limited white noise; 2.12. Peak factor
2.13. Effects of truncation of peaks of acceleration signal on the PSD2.14. Standardized PSD/density of probability analogy; 2.15. Spectral density as a function of time; 2.16. Sum of two random processes; 2.17. Relationship between the PSD of the excitation and the response of a linear system; 2.18. Relationship between the PSD of the excitation and the cross-power spectral density of the response of a linear system; 2.19. Coherence function; 2.20. Transfer function calculation from random vibration measurements; 2.20.1. Theoretical relations; 2.20.2. Presence of noise on the input
2.20.3. Presence of noise on the response
Record Nr. UNINA-9910132211603321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Random vibration / / Christian Lalanne
Random vibration / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (649 p.)
Disciplina 620.11248
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Mechanical engineering - Standards
Strength of materials
ISBN 1-5231-1093-7
1-118-93117-3
1-118-93115-7
1-118-93116-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Statistical Properties of a Random Process; 1.1. Definitions; 1.1.1. Random variable; 1.1.2. Random process; 1.2. Random vibration in real environments; 1.3. Random vibration in laboratory tests; 1.4. Methods of random vibration analysis; 1.5. Distribution of instantaneous values; 1.5.1. Probability density; 1.5.2. Distribution function; 1.6. Gaussian random process; 1.7. Rayleigh distribution; 1.8. Ensemble averages: through the process; 1.8.1. n order average; 1.8.2. Centered moments
1.8.3. Variance1.8.4. Standard deviation; 1.8.5. Autocorrelation function; 1.8.6. Cross-correlation function; 1.8.7. Autocovariance; 1.8.8. Covariance; 1.8.9. Stationarity; 1.9. Temporal averages: along the process; 1.9.1. Mean; 1.9.2. Quadratic mean - rms value; 1.9.3. Moments of order n; 1.9.4. Variance - standard deviation; 1.9.5. Skewness; 1.9.6. Kurtosis; 1.9.7. Crest Factor; 1.9.8. Temporal autocorrelation function; 1.9.9. Properties of the autocorrelation function; 1.9.10. Correlation duration; 1.9.11. Cross-correlation; 1.9.12. Cross-correlation coefficient; 1.9.13. Ergodicity
1.10. Significance of the statistical analysis (ensemble or temporal)1.11. Stationary and pseudo-stationary signals; 1.13. Sliding mean; 1.14. Test of stationarity; 1.14.1. The reverse arrangements test (RAT); 1.14.2. The runs test; 1.15 Identification of shocks and/or signal problems; 1.16. Breakdown of vibratory signal into "events": choice of signal samples; 1.17. Interpretation and taking into account of environment variation; Chapter 2. Random Vibration Properties in the Frequency Domain; 2.1. Fourier transform; 2.2. Power spectral density; 2.2.1. Need; 2.2.2. Definition
2.3. Amplitude Spectral Density2.4. Cross-power spectral density; 2.5. Power spectral density of a random process; 2.6. Cross-power spectral density of two processes; 2.7. Relationship between the PSD and correlation function of a process; 2.8. Quadspectrum - cospectrum; 2.9. Definitions; 2.9.1. Broadband process; 2.9.2. White noise; 2.9.3. Band-limited white noise; 2.9.4. Narrow band process; 2.9.5. Colors of noise; 2.10. Autocorrelation function of white noise; 2.11. Autocorrelation function of band-limited white noise; 2.12. Peak factor
2.13. Effects of truncation of peaks of acceleration signal on the PSD2.14. Standardized PSD/density of probability analogy; 2.15. Spectral density as a function of time; 2.16. Sum of two random processes; 2.17. Relationship between the PSD of the excitation and the response of a linear system; 2.18. Relationship between the PSD of the excitation and the cross-power spectral density of the response of a linear system; 2.19. Coherence function; 2.20. Transfer function calculation from random vibration measurements; 2.20.1. Theoretical relations; 2.20.2. Presence of noise on the input
2.20.3. Presence of noise on the response
Record Nr. UNINA-9910813282603321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Specification development / / Christian Lalanne
Specification development / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Descrizione fisica 1 online resource (555 p.)
Disciplina 620.1054
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Shock (Mechanics)
Shock waves - Mathematical models
ISBN 1-5231-1095-3
1-118-93123-8
1-118-93121-1
1-118-93122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD
2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment
2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration
3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case
3.6.2. Linear sweep
Record Nr. UNINA-9910132211003321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Specification development / / Christian Lalanne
Specification development / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Descrizione fisica 1 online resource (555 p.)
Disciplina 620.1054
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Shock (Mechanics)
Shock waves - Mathematical models
ISBN 1-5231-1095-3
1-118-93123-8
1-118-93121-1
1-118-93122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD
2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment
2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration
3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case
3.6.2. Linear sweep
Record Nr. UNINA-9910829288703321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui