top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Critical component wear in heavy duty engines [[electronic resource] /] / P.A. Lakshminarayanan, Nagaraj S. Nayak
Critical component wear in heavy duty engines [[electronic resource] /] / P.A. Lakshminarayanan, Nagaraj S. Nayak
Autore Lakshminarayanan P. A
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.43028/8
Altri autori (Persone) NayakNagaraj S
Soggetto topico Internal combustion engines
Machine parts - Failures
Mechanical wear
ISBN 0-470-82885-4
1-283-27366-7
9786613273666
0-470-82884-6
0-470-82883-8
Classificazione TEC046000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CRITICAL COMPONENT WEAR IN HEAVY DUTY ENGINES; Contents; List of Contributors; Preface; Acknowledgements; PART I: OVERTURE; 1 Wear in the Heavy Duty Engine; 1.1 Introduction; 1.2 Engine Life; 1.3 Wear in Engines; 1.3.1 Natural Aging; 1.4 General Wear Model; 1.5 Wear of Engine Bearings; 1.6 Wear of Piston Rings and Liners; 1.7 Wear of Valves and Valve Guides; 1.8 Reduction in Wear Life of Critical Parts Due to Contaminants in Oil; 1.8.1 Oil Analysis; 1.9 Oils for New Generation Engines with Longer Drain Intervals; 1.9.1 Engine Oil Developments and Trends; 1.9.2 Shift in Engine Oil Technology
1.10 Filters1.10.1 Air Filter; 1.10.2 Oil Filter; 1.10.3 Water Filter; 1.10.4 Fuel Filter; 1.11 Types of Wear of Critical Parts in a Highly Loaded Diesel Engine; 1.11.1 Adhesive Wear; 1.11.2 Abrasive Wear; 1.11.3 Fretting Wear; 1.11.4 Corrosive Wear; References; 2 Engine Size and Life; 2.1 Introduction; 2.2 Engine Life; 2.3 Factors on Which Life is Dependent; 2.4 Friction Force and Power; 2.4.1 Mechanical Efficiency; 2.4.2 Friction; 2.5 Similarity Studies; 2.5.1 Characteristic Size of an Engine; 2.5.2 Velocity; 2.5.3 Oil Film Thickness; 2.5.4 Velocity Gradient; 2.5.5 Friction Force or Power
2.5.6 Indicated Power and Efficiency2.6 Archard's Law of Wear; 2.7 Wear Life of Engines; 2.7.1 Wear Life; 2.7.2 Nondimensional Wear Depth Achieved During Lifetime; 2.8 Summary; Appendix 2.A: Engine Parameters, Mechanical Efficiency and Life; Appendix 2.B: Hardness and Fatigue Limits of Different Copper-Lead-Tin (Cu-Pb-Sn) Bearings; Appendix 2.C: Hardness and Fatigue Limits of Different Aluminium-Tin (Al-Sn) Bearings; References; PART II VALVE TRAIN COMPONENTS; 3 Inlet Valve Seat Wear in High bmep Diesel Engines; 3.1 Introduction; 3.2 Valve Seat Wear
3.2.1 Design Aspects to Reduce Valve Seat Wear Life3.3 Shear Strain and Wear due to Relative Displacement; 3.4 Wear Model; 3.4.1 Wear Rate; 3.5 Finite Element Analysis; 3.6 Experiments, Results and Discussions; 3.6.1 Valve and Seat Insert of Existing Design; 3.6.2 Improved Valve and Seat Insert; 3.7 Summary; 3.8 Design Rule for Inlet Valve Seat Wear in High bmep Engines; References; 4 Wear of the Cam Follower and Rocker Toe; 4.1 Introduction; 4.2 Wear of Cam Follower Surfaces; 4.2.1 Wear Mechanism of the Cam Follower; 4.3 Typical Modes of; 4.4 Experiments on Cam Follower Wear
4.4.1 Follower Measurement4.5 Dynamics of the Valve Train System of the Pushrod Type; 4.5.1 Elastohydrodynamic and Transition of Boundary Lubrication; 4.5.2 Cam and Follower Dynamics; 4.6 Wear Model; 4.6.1 Wear Coefficient; 4.6.2 Valve Train Dynamics and Stress on the Follower; 4.6.3 Wear Depth; 4.7 Parametric Study; 4.7.1 Engine Speed; 4.7.2 Oil Film Thickness; 4.8 Wear of the Cast Iron Rocker Toe; 4.9 Summary; References; PART III LINER, PISTON AND PISTON RINGS; 5 Liner Wear: Wear of Roughness Peaks in Sparse Contact; 5.1 Introduction; 5.2 Surface Texture of Liners and Rings
5.2.1 Surface Finish
Record Nr. UNINA-9910139594803321
Lakshminarayanan P. A  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Critical component wear in heavy duty engines / / P.A. Lakshminarayanan, Nagaraj S. Nayak
Critical component wear in heavy duty engines / / P.A. Lakshminarayanan, Nagaraj S. Nayak
Autore Lakshminarayanan P. A
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.43028/8
Altri autori (Persone) NayakNagaraj S
Soggetto topico Internal combustion engines
Machine parts - Failures
Mechanical wear
ISBN 0-470-82885-4
1-283-27366-7
9786613273666
0-470-82884-6
0-470-82883-8
Classificazione TEC046000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CRITICAL COMPONENT WEAR IN HEAVY DUTY ENGINES; Contents; List of Contributors; Preface; Acknowledgements; PART I: OVERTURE; 1 Wear in the Heavy Duty Engine; 1.1 Introduction; 1.2 Engine Life; 1.3 Wear in Engines; 1.3.1 Natural Aging; 1.4 General Wear Model; 1.5 Wear of Engine Bearings; 1.6 Wear of Piston Rings and Liners; 1.7 Wear of Valves and Valve Guides; 1.8 Reduction in Wear Life of Critical Parts Due to Contaminants in Oil; 1.8.1 Oil Analysis; 1.9 Oils for New Generation Engines with Longer Drain Intervals; 1.9.1 Engine Oil Developments and Trends; 1.9.2 Shift in Engine Oil Technology
1.10 Filters1.10.1 Air Filter; 1.10.2 Oil Filter; 1.10.3 Water Filter; 1.10.4 Fuel Filter; 1.11 Types of Wear of Critical Parts in a Highly Loaded Diesel Engine; 1.11.1 Adhesive Wear; 1.11.2 Abrasive Wear; 1.11.3 Fretting Wear; 1.11.4 Corrosive Wear; References; 2 Engine Size and Life; 2.1 Introduction; 2.2 Engine Life; 2.3 Factors on Which Life is Dependent; 2.4 Friction Force and Power; 2.4.1 Mechanical Efficiency; 2.4.2 Friction; 2.5 Similarity Studies; 2.5.1 Characteristic Size of an Engine; 2.5.2 Velocity; 2.5.3 Oil Film Thickness; 2.5.4 Velocity Gradient; 2.5.5 Friction Force or Power
2.5.6 Indicated Power and Efficiency2.6 Archard's Law of Wear; 2.7 Wear Life of Engines; 2.7.1 Wear Life; 2.7.2 Nondimensional Wear Depth Achieved During Lifetime; 2.8 Summary; Appendix 2.A: Engine Parameters, Mechanical Efficiency and Life; Appendix 2.B: Hardness and Fatigue Limits of Different Copper-Lead-Tin (Cu-Pb-Sn) Bearings; Appendix 2.C: Hardness and Fatigue Limits of Different Aluminium-Tin (Al-Sn) Bearings; References; PART II VALVE TRAIN COMPONENTS; 3 Inlet Valve Seat Wear in High bmep Diesel Engines; 3.1 Introduction; 3.2 Valve Seat Wear
3.2.1 Design Aspects to Reduce Valve Seat Wear Life3.3 Shear Strain and Wear due to Relative Displacement; 3.4 Wear Model; 3.4.1 Wear Rate; 3.5 Finite Element Analysis; 3.6 Experiments, Results and Discussions; 3.6.1 Valve and Seat Insert of Existing Design; 3.6.2 Improved Valve and Seat Insert; 3.7 Summary; 3.8 Design Rule for Inlet Valve Seat Wear in High bmep Engines; References; 4 Wear of the Cam Follower and Rocker Toe; 4.1 Introduction; 4.2 Wear of Cam Follower Surfaces; 4.2.1 Wear Mechanism of the Cam Follower; 4.3 Typical Modes of; 4.4 Experiments on Cam Follower Wear
4.4.1 Follower Measurement4.5 Dynamics of the Valve Train System of the Pushrod Type; 4.5.1 Elastohydrodynamic and Transition of Boundary Lubrication; 4.5.2 Cam and Follower Dynamics; 4.6 Wear Model; 4.6.1 Wear Coefficient; 4.6.2 Valve Train Dynamics and Stress on the Follower; 4.6.3 Wear Depth; 4.7 Parametric Study; 4.7.1 Engine Speed; 4.7.2 Oil Film Thickness; 4.8 Wear of the Cast Iron Rocker Toe; 4.9 Summary; References; PART III LINER, PISTON AND PISTON RINGS; 5 Liner Wear: Wear of Roughness Peaks in Sparse Contact; 5.1 Introduction; 5.2 Surface Texture of Liners and Rings
5.2.1 Surface Finish
Record Nr. UNINA-9910822991303321
Lakshminarayanan P. A  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling Spark Ignition Combustion
Modelling Spark Ignition Combustion
Autore Lakshminarayanan P. A
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (678 pages)
Altri autori (Persone) AgarwalAvinash Kumar
GeHaiwen
MallikarjunaJ. M
Collana Energy, Environment, and Sustainability Series
ISBN 981-9706-29-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- 1 Introduction -- 1.1 Introduction -- 1.2 Engine Research -- 1.3 Engine Modifications -- 1.3.1 Direct Injection -- 1.3.2 Turbocharging -- 1.3.3 Variable Valve Timing and Valve Lift -- 1.3.4 Cylinder Deactivation -- 1.3.5 Controlled Autoignition Combustion by Compression -- 1.4 Combustion in SI Engines -- 1.5 Engine Experiments -- 1.6 Engine Modelling -- 1.6.1 Classical Analyses Based on Thermodynamics -- 1.6.2 CFD -- 1.6.3 Spark Growth -- 1.6.4 Knock -- 1.6.5 Emissions -- 1.7 Summary -- References -- Part I Classical Combustion Models -- 2 Two-Zone Combustion Models -- 2.1 Turbulence Structure and Entrainment of Unburned Gases by Flame Front -- 2.2 Combustion Model of Blizard and Keck -- 2.2.1 Limiting Cases -- 2.3 Combustion Models by Tabaczynski et al. -- 2.3.1 Model for the Burn Rate-1st Proposal by Tabaczynski et al. -- 2.3.2 Model for the Burn Rate-2nd Proposal by Tabaczynski et al. -- 2.4 Thermodynamic Simulation of Two-Zone Combustion Model -- 2.4.1 Intake and Exhaust Flows -- 2.4.2 A Thermodynamic Cycle Simulation -- 2.4.3 Detailed Thermodynamic Simulation of Thermodynamics with the Blizard and Keck Model or Models of Tabaczynski et al. -- 2.5 Validation of Two-Zone Combustion Models -- 2.5.1 Blizard and Keck Model -- 2.5.2 Models of Tabaczynski et al. -- 2.6 NO Formation: A Kinetic Model -- 2.7 Model for HC Formation -- 2.7.1 Model for HC Emissions -- 2.7.2 The Role of Ring Crevice in HC Emission -- 2.7.3 HC Oxidation During the Exhaust -- 2.7.4 Model Prediction and Engine Experiments Are Compared -- 2.7.5 Simulation of Effects of Various Operating Parameters -- 2.8 Summary -- Appendices -- Appendix 2.1: A Simplified Equilibrium Thermodynamic Combustion Model -- Appendix 2.2: Laminar Flame Velocity -- Relative Correlations -- Laminar Flame Speed Correlation Due to Tiggelen.
Appendix 2.3: Area of Flame Front and the Volume Enclosed by It -- Appendix 2.4: Heat Transfer Correlation by Woschni -- Appendix 2.5: Engines Used in This Chapter -- Appendix 2.6: Henry's Constant HC for Fuel (n-Octane) in Oil -- Appendix 2.7: Evaluation of gF* and gG* -- Appendix 2.8: In-Cylinder Oxidation of HC -- Appendix 2.9: Estimation of Wall Surface Temperature -- References -- Part II Variable Valve Timing and Valve Lift -- 3 Variable Valve Timing and Valve Lift -- 3.1 Introduction to the Inherent Potential of Variable Valve Timing Systems -- 3.2 Mechanical Cam Systems -- 3.2.1 Baseline Valve Events of Conventional SI Engines -- 3.2.2 Various Layout Approaches on Intake and Exhaust Valve Timing -- 3.2.3 Experimental Assessment of Various Variable Valve Control Methods -- 3.2.4 Map for Cam Phasing and Valve Lift -- 3.2.5 Variable Valve Lift Systems -- 3.3 Control Systems -- 3.3.1 Valve Lift Switching Procedure -- 3.3.2 Variable Valve Timing Control Method -- 3.4 Dynamic Analysis of the Valve Lift System -- 3.4.1 Integration with Time -- 3.4.2 Simulation -- 3.4.3 Components -- 3.5 Cylinder Deactivation (CDA) -- 3.5.1 Simulation of Fixed-Type Deactivation Under Steady-State Conditions -- 3.5.2 Simulation of Deactivation During Transient Conditions (Lee Et Al. 2018) -- 3.5.3 Problems Associated with Cylinder Deactivation -- 3.5.4 A Solution to the Problems by Tula Technology (Wilcutts et al. 2019) -- 3.5.5 Further Improvement of NVH with eDSF (Serrano et al 2014) -- 3.6 Summary -- References -- Part III Models for Flow Inside the Cylinder -- 4 Visualisation and Modelling of In-Cylinder Phenomena Using Optical Engines -- 4.1 Introduction -- 4.2 Computational Fluid Dynamics (CFD) -- 4.3 In-Cylinder Visualisation -- 4.4 In-Cylinder Flow Visualisation and Modelling -- 4.5 In-Cylinder Fuel-Air Mixture Distribution Imaging and Modelling.
4.5.1 Impact of Injection Timing on Fuel Distribution -- 4.5.2 Impact of Injection Pressure on Fuel Distribution -- 4.6 In-Cylinder Spray Morphology Visualization and Modelling -- 4.6.1 Impact of Injection Orientation on Fuel Distribution -- 4.6.2 Impact of Fuel Spray on the In-Cylinder Flow Field -- 4.7 In-Cylinder Combustion Visualisation -- 4.8 Conclusions and Future Scope -- References -- 5 Modelling Flow Inside a Gasoline Engine -- 5.1 Introduction -- 5.2 1D Modelling -- 5.3 CFD Models Used for 3D Simulation -- 5.4 Governing Equations -- 5.4.1 The Mass, Momentum, and Energy Equations -- 5.4.2 Equation of State -- 5.4.3 The Species Transport Equations -- 5.4.4 The Turbulence Model -- 5.4.5 The Spray Model -- 5.4.6 Velocity of Droplets -- 5.4.7 Coefficient of Drag (CD) -- 5.4.8 The Spray Breakup -- 5.4.9 The Droplet Collision Model -- 5.4.10 The Turbulent Dispersion Model -- 5.4.11 The Wall Film Model -- 5.4.12 The Frossling Vaporization Model -- 5.4.13 Solver -- 5.4.14 Time Step Control -- 5.4.15 Convergence Criterion -- 5.5 Impact of Piston Top Surface on the In-Cylinder Flow -- 5.6 Conclusion -- References -- Part IV Ignition Model -- 6 Modelling of Spark Ignition System -- 6.1 Introduction -- 6.2 DPIK Model -- 6.3 Ignition System Model -- 6.4 Effects of Spark Plug Orientation on the Ignition Process -- 6.5 Conclusions -- References -- 7 Modelling Ignition and Combustion in GDI Engines -- 7.1 Introduction -- 7.2 Ignition Models -- 7.2.1 Discrete Particle Ignition Kernel (DPIK) Model (Fan et al. 1999) -- 7.2.2 Modified DPIK Model (Tan and Reitz 2003) -- 7.2.3 Triangulated Lagrangian Ignition Kernel Model (TLIK) Model (Perini et al. 2018) -- 7.3 Spark Channel Modelling -- 7.3.1 Ignition Model by Zhu et al. (2018) -- 7.4 Restrike Model -- 7.4.1 Arc and Kernel Tracking Ignition Model (AKTIM) (Colin et al. 2003) -- 7.5 Recent Improvements.
7.5.1 Large Eddy Simulation (LES) Based on Imposed Stretch Spark-Ignition Model (ISSIM) Model (Colin and Truffin 2011) -- 7.6 The Imposed Stretch Spark-Ignition Model (ISSIM) -- 7.7 Combustion Model -- 7.7.1 Introduction -- 7.7.2 G-Equation Model (Peters and Dekena 1999) -- 7.8 Validation of a 2.0 L-2 V Gasoline Engine -- 7.8.1 G-Equation Model-Level-Set Approach (Tan and Reitz 2003) -- 7.8.2 Combustion Model by Zhu et al. Based on Swept Volume Method (Zhu et al. 2018) -- 7.8.3 Extended Coherent Flame (ECFM) Model (Colin et al. 2003) -- 7.9 The Extended Coherent Flame Model (ECFM) -- 7.10 Computing the Fresh and Burned Gas States -- 7.11 Extension to Multi-Component Fuels -- 7.11.1 The CFM-LES Combustion Model -- 7.12 Modelling of the Flame Propagation and Curvature -- 7.13 Modelling the Flame Strain Rate -- 7.14 Modelling of the Transport of Flame Surface Density (FSD) -- 7.15 Control of the Flame Brush Thickness -- 7.16 Validation of Ignition and Combustion Models -- 7.17 Summary -- References -- 8 Modelling of Gasoline Direct-Injection Compression Ignition Engines -- 8.1 Introduction -- 8.1.1 Validation of Numerical Models -- 8.2 Results and Discussions -- 8.2.1 Zero-Dimensional Simulations -- 8.2.2 Comparison of GDCI Combustion Simulations in Zero-Dimensional and Three-Dimensional -- 8.3 Conclusions -- References -- Part V Stratified Combustion -- 9 Modelling Spray in GDI Engines: Fuel Injection Modelling -- 9.1 Introduction -- 9.2 Mixture Preparation in GDI Engines -- 9.2.1 Types of GDI Engines -- 9.2.2 Fuel Injection Systems for GDI Engine -- 9.3 Spray Breakup Theory -- 9.4 Spray Breakup Models -- 9.4.1 Kelvin-Helmholtz (KH) Model -- 9.4.2 Wu-Faeth Model -- 9.4.3 Huh and Gosman Model -- 9.4.4 Arcoumanis and Gavaises Model -- 9.4.5 Rayleigh-Taylor (RT) Model -- 9.4.6 Taylor Analogy Breakup (TAB) Model -- 9.4.7 LISA Model -- 9.5 Model Validation.
9.6 Hybrid Models -- 9.6.1 KH-RT Model -- 9.6.2 KH-ACT Model -- 9.7 Model Validation -- 9.7.1 WF-KH-RT Model -- 9.8 Model Validation -- 9.9 Quantifying Mixture in GDI Engines -- 9.10 The Impact of Engine Parameters on Mixture Formation in a GDI Engine -- 9.10.1 Injection Pressure and Temperature -- 9.10.2 Piston Shape -- 9.10.3 Injection Strategies -- 9.10.4 Valve Position and Orientation -- 9.10.5 Spark Advance -- 9.10.6 The Relative Position of the Spark Plug and the Fuel Injector -- 9.10.7 Other Parameters -- 9.11 Summary -- References -- Part VI Passive and Active Prechambers -- 10 Modelling of Gasoline-Fuelled Passive Pre-chamber Combustion System -- 10.1 Introduction -- 10.2 Numerical Models -- 10.3 Model Validation -- 10.4 Ignition Mechanism of the Main Chamber by Hot Turbulent Jets -- 10.5 CFD-Guided Development of a Pre-chamber Design for an SI Engine -- 10.6 Coupled Artificial Intelligence, CFD, and Genetic Algorithm for Automated Optimization of Pre-chamber Design -- References -- 11 Design Space for Prechamber Gasoline Engine Modelling -- 11.1 Introduction -- 11.2 Prechamber Combustion Physics -- 11.2.1 Important Parameters of Prechamber Combustion -- 11.2.2 Important Parameters of Main Chamber Combustion -- 11.2.3 Design Parameters -- 11.3 Analysis of Design Parameters from Published Literature -- 11.4 Conclusions -- Appendix -- References -- 12 Modelling Spark-Ignited Gaseous Fuelled Engines -- 12.1 Alternative Gaseous Fuels for Engines: CNG and H2 -- 12.1.1 Introduction to Gaseous Fuels for Engine Combustion -- 12.1.2 Fuel Properties and Impact on Engine Performance and Emissions -- 12.2 Modelling Conventional Spark-Ignition CNG/H2 Engines -- 12.2.1 Modelling PFI SI CNG/H2 Engines -- 12.2.2 Modelling DI SI CNG/H2 Engines -- 12.3 Modelling Prechamber CNG/H2 Engines -- 12.3.1 Introduction to Prechamber Engines.
12.3.2 Prechamber Combustion Fundamentals and Modelling.
Record Nr. UNINA-9910861099803321
Lakshminarayanan P. A  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui