top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanotechnology and nanomaterials for energy / / Pierre-Camille Lacaze and Jean-Christophe Lacroix
Nanotechnology and nanomaterials for energy / / Pierre-Camille Lacaze and Jean-Christophe Lacroix
Autore Lacaze Pierre-Camille
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (384 pages)
Disciplina 621.042
Soggetto topico Energy conversion
Energy storage - Environmental aspects
Soggetto genere / forma Electronic books.
ISBN 1-119-88157-9
1-119-88159-5
1-119-88158-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part 1. Nanomaterials and Nanotechnologies -- Chapter 1. Carbon-based Nanomaterials -- 1.1. Fullerenes -- 1.1.1. Properties of fullerenes -- 1.2. Carbon nanodiamonds -- 1.2.1. Principal techniques used in creating nanodiamonds -- 1.2.2. Key properties of nanodiamonds -- 1.3. Carbon dots or carbon quantum dots -- 1.3.1. CQD production methods -- 1.3.2. Fluorescence properties of CQDs -- 1.3.3. CQD applications -- 1.4. Carbon nanotubes -- 1.4.1. Chirality of carbon nanotubes -- 1.4.2. Mechanistic models of CNT growth -- 1.4.3. CNT arrays aligned horizontally or perpendicularly to a planar substrate -- 1.4.4. Key properties and applications of CNTs -- 1.4.5. Conclusion -- 1.5. Graphene -- 1.5.1. Electrical properties of exfoliated graphene -- 1.5.2. Graphene production techniques -- 1.5.3. Applications of graphene and graphene derivatives -- 1.5.4. Conclusion -- 1.6. Graphene quantum dots -- 1.6.1. GQD production methods -- 1.6.2. Properties and applications of GQDs -- 1.6.3. Graphdiyne: a new alternative to graphene -- 1.7. Conclusions and perspectives of carbon-based nanomaterials -- Chapter 2. Inorganic Nanomaterials -- 2.1. Metallic nanoparticles -- 2.1.1. Gold nanoparticles (Au NPs) -- 2.1.2. Core-shell type bimetallic nanoparticles -- 2.2. Metal nanoclusters -- 2.2.1. Production methods for gold nanoclusters -- 2.2.2. Structure and stability criteria of Au NC -- 2.2.3. Luminescence properties of Au NCs -- 2.2.4. Applications using the luminescent properties of Au NCs -- 2.2.5. Conclusion -- 2.3. Semiconductor quantum dots -- 2.3.1. Development of colloidal QDs -- 2.4. Two-dimensional inorganic lamellar nanosheets -- 2.4.2. Conclusion -- 2.5. Hybrid metal-organic frameworks -- 2.5. Hybrid metal-organic frameworks -- 2.5.1. MOF production.
2.5.2. Potential applications of MOFs -- 2.5.3. Conclusions -- 2.6. Conclusions on inorganic nanomaterials -- Part 2. Nanotechnology and Nanomaterials for Energy -- Chapter 3. Energy Storage -- 3.1. Worldwide energy use -- 3.2. Energy storage systems -- 3.2.1. Non-chemical/electrochemical storage -- 3.2.2. Chemical and electrochemical storage systems -- 3.2.3. Rechargeable batteries -- 3.2.4. Supercapacitors -- 3.2.5. Pseudocapacitors -- 3.3. Conclusions on energy storage -- Chapter 4. Energy Conversion -- 4.1. Photovoltaics -- 4.1.1. General principles of the photovoltaic process -- 4.1.2. Photovoltaic technologies -- 4.2. Electroluminescence, lighting and display -- 4.2.1. Inorganic light-emitting diodes -- 4.2.2. Organic light-emitting diodes -- 4.2.3. QDot light-emitting diodes -- 4.3. Conclusions on energy conversion -- Chapter 5. Electro- and Photocatalysis -- 5.1. Water splitting -- 5.2. Electrolysis techniques -- 5.3. HER and OER processes in water splitting -- 5.3.1. HER in an acidic medium -- 5.3.2. HER in alkaline media -- 5.3.3. Conclusions on HER reactions -- 5.3.4. Catalysts for oxygen evolution reaction -- 5.4. Photoelectrochemical water splitting -- 5.4.1. Heterogeneous photocatalysts -- 5.4.2. Photocatalytic systems with two SC heterojunctions -- 5.4.3. Conclusions -- 5.5. Fuel cells -- 5.5.1. Operating principle of a fuel cell -- 5.5.2. Choice of O2 reduction catalysts -- 5.5.3. Conclusions on electrocatalysis and photocatalysis -- Conclusion -- References -- Index -- Other titles from iSTE in Energy -- EULA.
Record Nr. UNINA-9910555178903321
Lacaze Pierre-Camille  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotechnology and nanomaterials for energy / / Pierre-Camille Lacaze and Jean-Christophe Lacroix
Nanotechnology and nanomaterials for energy / / Pierre-Camille Lacaze and Jean-Christophe Lacroix
Autore Lacaze Pierre-Camille
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (384 pages)
Disciplina 621.042
Soggetto topico Energy conversion
Energy storage - Environmental aspects
ISBN 1-119-88157-9
1-119-88159-5
1-119-88158-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part 1. Nanomaterials and Nanotechnologies -- Chapter 1. Carbon-based Nanomaterials -- 1.1. Fullerenes -- 1.1.1. Properties of fullerenes -- 1.2. Carbon nanodiamonds -- 1.2.1. Principal techniques used in creating nanodiamonds -- 1.2.2. Key properties of nanodiamonds -- 1.3. Carbon dots or carbon quantum dots -- 1.3.1. CQD production methods -- 1.3.2. Fluorescence properties of CQDs -- 1.3.3. CQD applications -- 1.4. Carbon nanotubes -- 1.4.1. Chirality of carbon nanotubes -- 1.4.2. Mechanistic models of CNT growth -- 1.4.3. CNT arrays aligned horizontally or perpendicularly to a planar substrate -- 1.4.4. Key properties and applications of CNTs -- 1.4.5. Conclusion -- 1.5. Graphene -- 1.5.1. Electrical properties of exfoliated graphene -- 1.5.2. Graphene production techniques -- 1.5.3. Applications of graphene and graphene derivatives -- 1.5.4. Conclusion -- 1.6. Graphene quantum dots -- 1.6.1. GQD production methods -- 1.6.2. Properties and applications of GQDs -- 1.6.3. Graphdiyne: a new alternative to graphene -- 1.7. Conclusions and perspectives of carbon-based nanomaterials -- Chapter 2. Inorganic Nanomaterials -- 2.1. Metallic nanoparticles -- 2.1.1. Gold nanoparticles (Au NPs) -- 2.1.2. Core-shell type bimetallic nanoparticles -- 2.2. Metal nanoclusters -- 2.2.1. Production methods for gold nanoclusters -- 2.2.2. Structure and stability criteria of Au NC -- 2.2.3. Luminescence properties of Au NCs -- 2.2.4. Applications using the luminescent properties of Au NCs -- 2.2.5. Conclusion -- 2.3. Semiconductor quantum dots -- 2.3.1. Development of colloidal QDs -- 2.4. Two-dimensional inorganic lamellar nanosheets -- 2.4.2. Conclusion -- 2.5. Hybrid metal-organic frameworks -- 2.5. Hybrid metal-organic frameworks -- 2.5.1. MOF production.
2.5.2. Potential applications of MOFs -- 2.5.3. Conclusions -- 2.6. Conclusions on inorganic nanomaterials -- Part 2. Nanotechnology and Nanomaterials for Energy -- Chapter 3. Energy Storage -- 3.1. Worldwide energy use -- 3.2. Energy storage systems -- 3.2.1. Non-chemical/electrochemical storage -- 3.2.2. Chemical and electrochemical storage systems -- 3.2.3. Rechargeable batteries -- 3.2.4. Supercapacitors -- 3.2.5. Pseudocapacitors -- 3.3. Conclusions on energy storage -- Chapter 4. Energy Conversion -- 4.1. Photovoltaics -- 4.1.1. General principles of the photovoltaic process -- 4.1.2. Photovoltaic technologies -- 4.2. Electroluminescence, lighting and display -- 4.2.1. Inorganic light-emitting diodes -- 4.2.2. Organic light-emitting diodes -- 4.2.3. QDot light-emitting diodes -- 4.3. Conclusions on energy conversion -- Chapter 5. Electro- and Photocatalysis -- 5.1. Water splitting -- 5.2. Electrolysis techniques -- 5.3. HER and OER processes in water splitting -- 5.3.1. HER in an acidic medium -- 5.3.2. HER in alkaline media -- 5.3.3. Conclusions on HER reactions -- 5.3.4. Catalysts for oxygen evolution reaction -- 5.4. Photoelectrochemical water splitting -- 5.4.1. Heterogeneous photocatalysts -- 5.4.2. Photocatalytic systems with two SC heterojunctions -- 5.4.3. Conclusions -- 5.5. Fuel cells -- 5.5.1. Operating principle of a fuel cell -- 5.5.2. Choice of O2 reduction catalysts -- 5.5.3. Conclusions on electrocatalysis and photocatalysis -- Conclusion -- References -- Index -- Other titles from iSTE in Energy -- EULA.
Record Nr. UNINA-9910830866903321
Lacaze Pierre-Camille  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Non-volatile memories / / Pierre-Camille Lacaze, Jean-Christophe Lacroix
Non-volatile memories / / Pierre-Camille Lacaze, Jean-Christophe Lacroix
Autore Lacaze Pierre-Camille
Pubbl/distr/stampa Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2014
Descrizione fisica 1 online resource (305 p.)
Disciplina 621.39732
Collana Electronics engineering series
Soggetto topico Flash memories (Computers)
Computer storage devices
ISBN 1-118-79012-X
1-118-78998-9
1-118-79028-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Acknowledgments; Preface; PART 1: Information Storage and the State of the Art of Electronic Memories; 1: General Issues Related to Data Storage and Analysis Classification of Memories and Related Perspectives; 1.1. Issues arising from the flow of digital information; 1.2. Current electronic memories and their classification; 1.3. Memories of the future; 2: State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories; 2.1. DRAM volatile memories; 2.1.1. The operating principle of a MOSFET (metal oxide semiconductor field effect transistor)
2.1.2. Operating characteristics of DRAM memories 2.2. SRAM memories; 2.3. Non-volatile memories related to CMOS technology; 2.3.1. Operational characteristics of a floating gate MOSFET; 2.3.1.1. How to charge and discharge the floating gate?; 2.3.1.2. Physical problems related to the storage of electrical charges and their impact on the operation of a floating gate memory; 2.3.1.2.1. Charge retention; 2.3.1.2.2. Problems related to writing and electron injection; 2.3.1.3. Multilevel cells
2.3.1.4. The quality of dielectrics: one of the reasons behind the limitation of floating gate memory performances 2.3.1.5. The "Achille's heel" of floating gate memories; 2.3.2. Flash memories; 2.3.2.1. NOR and NAND Flash memories; 2.3.2.2. General organization of NAND Flash memories; 2.3.2.3. Perspectives for Flash memories; 2.4. Non-volatile magnetic memories (hard disk drives - HDDs and MRAMs); 2.4.1. The discovery of giant magneto resistance at the origin of the spread of hard disk drives; 2.4.1.1. GMR characteristics; 2.4.2. Spin valves; 2.4.3. Magnetic tunnel junctions
2.4.4. Operational characteristics of a hard disk drive (HDD)2.4.5. Characteristics of a magnetic random access memory (MRAM); 2.5. Conclusion; 3: Evolution of SSD Toward FeRAM, FeFET, CTM and STT-RAM Memories; 3.1. Evolution of DRAMs toward ferroelectric FeRAMs; 3.1.1. Characteristics of a ferroelectric material; 3.1.2. Principle of an FeRAM memory; 3.1.3. Characteristics of an FeFET memory; 3.1.3.1. Retention characteristics; 3.1.3.2. Ferroelectric materials other than oxides?; 3.2. The evolution of Flash memories towards charge trap memories (CTM)
3.3. The evolution of magnetic memories (MRAM) toward spin torque transfer memories (STT-RAM)3.3.1. Nanomagnetism and experimental implications; 3.3.2. Characteristics of spin torque transfer; 3.3.3. Recent evolution with use of perpendicular magneticanisotropic materials; 3.4. Conclusions; PART 2: The Emergence of New Concepts: The Inorganic NEMS, PCRAM, ReRAM and Organic Memories; 4: Volatile and Non-volatile Memories Based on NEMS; 4.1. Nanoelectromechanical switches with two electrodes; 4.1.1. NEMS with cantilevers; 4.1.1.1. Operation and memory effect of an NEMS with a cantilever
4.1.1.2. Description of the elaboration technique
Record Nr. UNINA-9910140494003321
Lacaze Pierre-Camille  
Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Non-volatile memories / / Pierre-Camille Lacaze, Jean-Christophe Lacroix
Non-volatile memories / / Pierre-Camille Lacaze, Jean-Christophe Lacroix
Autore Lacaze Pierre-Camille
Pubbl/distr/stampa Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2014
Descrizione fisica 1 online resource (305 p.)
Disciplina 621.39732
Collana Electronics engineering series
Soggetto topico Flash memories (Computers)
Computer storage devices
ISBN 1-118-79012-X
1-118-78998-9
1-118-79028-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Acknowledgments; Preface; PART 1: Information Storage and the State of the Art of Electronic Memories; 1: General Issues Related to Data Storage and Analysis Classification of Memories and Related Perspectives; 1.1. Issues arising from the flow of digital information; 1.2. Current electronic memories and their classification; 1.3. Memories of the future; 2: State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories; 2.1. DRAM volatile memories; 2.1.1. The operating principle of a MOSFET (metal oxide semiconductor field effect transistor)
2.1.2. Operating characteristics of DRAM memories 2.2. SRAM memories; 2.3. Non-volatile memories related to CMOS technology; 2.3.1. Operational characteristics of a floating gate MOSFET; 2.3.1.1. How to charge and discharge the floating gate?; 2.3.1.2. Physical problems related to the storage of electrical charges and their impact on the operation of a floating gate memory; 2.3.1.2.1. Charge retention; 2.3.1.2.2. Problems related to writing and electron injection; 2.3.1.3. Multilevel cells
2.3.1.4. The quality of dielectrics: one of the reasons behind the limitation of floating gate memory performances 2.3.1.5. The "Achille's heel" of floating gate memories; 2.3.2. Flash memories; 2.3.2.1. NOR and NAND Flash memories; 2.3.2.2. General organization of NAND Flash memories; 2.3.2.3. Perspectives for Flash memories; 2.4. Non-volatile magnetic memories (hard disk drives - HDDs and MRAMs); 2.4.1. The discovery of giant magneto resistance at the origin of the spread of hard disk drives; 2.4.1.1. GMR characteristics; 2.4.2. Spin valves; 2.4.3. Magnetic tunnel junctions
2.4.4. Operational characteristics of a hard disk drive (HDD)2.4.5. Characteristics of a magnetic random access memory (MRAM); 2.5. Conclusion; 3: Evolution of SSD Toward FeRAM, FeFET, CTM and STT-RAM Memories; 3.1. Evolution of DRAMs toward ferroelectric FeRAMs; 3.1.1. Characteristics of a ferroelectric material; 3.1.2. Principle of an FeRAM memory; 3.1.3. Characteristics of an FeFET memory; 3.1.3.1. Retention characteristics; 3.1.3.2. Ferroelectric materials other than oxides?; 3.2. The evolution of Flash memories towards charge trap memories (CTM)
3.3. The evolution of magnetic memories (MRAM) toward spin torque transfer memories (STT-RAM)3.3.1. Nanomagnetism and experimental implications; 3.3.2. Characteristics of spin torque transfer; 3.3.3. Recent evolution with use of perpendicular magneticanisotropic materials; 3.4. Conclusions; PART 2: The Emergence of New Concepts: The Inorganic NEMS, PCRAM, ReRAM and Organic Memories; 4: Volatile and Non-volatile Memories Based on NEMS; 4.1. Nanoelectromechanical switches with two electrodes; 4.1.1. NEMS with cantilevers; 4.1.1.1. Operation and memory effect of an NEMS with a cantilever
4.1.1.2. Description of the elaboration technique
Record Nr. UNINA-9910819991903321
Lacaze Pierre-Camille  
Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui