Constant mean curvature surfaces with boundary / / Rafael Lopez |
Autore | López Rafael |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Heidelberg, Germany : , : Springer, , 2013 |
Descrizione fisica | 1 online resource (xiv, 292 pages) : illustrations |
Disciplina | 510 |
Collana | Springer Monographs in Mathematics |
Soggetto topico |
Surfaces of constant curvature
Curves, Algebraic Boundary value problems |
ISBN | 3-642-39626-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Surfaces with Constant Mean Curvature -- Constant Mean Curvature Embedded Surfaces -- The Flux Formula for Constant Mean Curvature Surfaces -- The Area and the Volume of a Constant Mean Curvature Surface -- Constant Mean Curvature Discs with Circular Boundary -- The Dirichlet Problem of the CMC Equation -- The Dirichlet Problem in Unbounded Domains -- Constant Mean Curvature Surfaces in Hyperbolic Space -- The Dirichlet Problem in Hyperbolic Space -- Constant Mean Curvature Surfaces in Lorentz-Minkowski Space -- Appendix: A. The Variation Formula of the Area and the Volume -- B. Open Questions -- References. |
Record Nr. | UNINA-9910438037103321 |
López Rafael | ||
Heidelberg, Germany : , : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Point-Set Topology : A Working Textbook |
Autore | López Rafael |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2024 |
Descrizione fisica | 1 online resource (397 pages) |
Collana | Springer Undergraduate Mathematics Series |
ISBN |
9783031585135
9783031585128 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 Introduction -- 2 Topological Spaces -- 2.1 Topological Spaces and Examples -- 2.2 Basis for a Topology -- 2.3 The Euclidean Topology -- 2.4 Subbasis for a Topology -- 2.5 Topological Subspaces -- 2.6 Worked Exercises -- 2.7 Suggested Exercises -- 3 Proximity on a Topological Space -- 3.1 Neighborhoods of a Point -- 3.2 Basis of Neighborhoods -- 3.3 Interior and Closure -- 3.4 Convergence of Sequences -- 3.5 Worked Exercises -- 3.6 Suggested Exercises -- 4 Metric Spaces -- 4.1 Distance and Metric Spaces -- 4.2 Topology on a Metric Space -- 4.3 Interior and Closure in a Metric Space -- 4.4 Convergence of Sequences in a Metric Space -- 4.5 Worked Exercises -- 4.6 Suggested Exercises -- 5 Continuity -- 5.1 Continuous Mappings -- 5.2 Properties of Continuous Maps -- 5.3 Continuous Maps on Euclidean Spaces -- 5.4 Worked Exercises -- 5.5 Suggested Exercises -- 6 Homeomorphisms and Topological Invariants -- 6.1 Homeomorphisms -- 6.2 Topological Invariants -- 6.3 Construction of Homeomorphisms in Euclidean Spaces -- 6.4 Embeddings and Open Maps -- 6.5 Worked Exercises -- 6.6 Suggested Exercises -- 7 Product Topology -- 7.1 The Product Topology -- 7.2 Product Topology and Continuity -- 7.3 Product Topology: The Infinite Case -- 7.4 Worked Exercises -- 7.5 Suggested Exercises -- 8 Connectedness -- 8.1 Connected Spaces and Examples -- 8.2 Further Properties of Connectedness -- 8.3 Connected Components -- 8.4 Path Connectedness -- 8.5 Worked Exercises -- 8.6 Suggested Exercises -- 9 Compactness -- 9.1 Compact Spaces and Examples -- 9.2 Compactness in Euclidean Spaces -- 9.3 Worked Exercises -- 9.4 Suggested Exercises -- 10 Quotient Topology -- 10.1 Motivation and Definition of the Quotient Topology -- 10.2 Final Topology and Identifications -- 10.3 Construction of Homeomorphisms in a Quotient Space.
10.4 Maps Between Quotient Spaces -- 10.5 Worked Exercises -- 10.6 Suggested Exercises -- 11 The Fundamental Group -- 11.1 Homotopy and Loops -- 11.2 The Fundamental Group of S1 -- 11.3 The Fundamental Group of Sn, n≥2 -- 11.4 Retractions -- 11.5 Worked Exercises -- 11.6 Suggested Exercises -- Bibliography -- Index. |
Record Nr. | UNINA-9910865252603321 |
López Rafael | ||
Cham : , : Springer International Publishing AG, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|