top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Ultrasonics [[electronic resource] ] : Fundamentals and Applications / / edited by H. Kuttruff
Ultrasonics [[electronic resource] ] : Fundamentals and Applications / / edited by H. Kuttruff
Autore Kuttruff Heinrich
Edizione [1st ed. 1991.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1991
Descrizione fisica 1 online resource (458 p. 20 illus.)
Disciplina 534.5/5
Soggetto topico Materials science
Physics
Characterization and Evaluation of Materials
Physics, general
ISBN 94-011-3846-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto I Introduction -- I.1 What is ultrasound? -- I.2 A few historical remarks -- I.3 Ultrasound in the living world -- I.4 Upper frequency limit of sound -- II Basic Concepts of Acoustics -- II.1 Sound fields and the physical quantities describing them -- II.2 Sound propagation in gases and liquids -- II.3 Sound waves in solids -- II.4 Reflection and refraction -- II.5 Doppler effect -- III Sound Radiation and Sound Diffraction -- III.1 Signals in time and frequency representation, linear systems -- III.2 The principle of point source synthesis, the moving piston -- III.3 Radiation from a circular piston -- III.4 Piston with non-uniform surface velocity -- III.5 Diffraction and scattering -- IV Generation of Ultrasound—Part I -- IV.1 The piezoelectric effect -- IV.2 Piezoelectric materials -- IV.3 Basic piezoelectric equations, electro-mechanical coupling factor -- IV.4 Dynamic characteristics of piezoelectric transducers operated in their thickness mode -- IV.5 Mechanical and electrical equivalent circuit of a piezoelectric transducer near its resonance -- IV.6 Practical design of piezoelectric ultrasound generators -- V Generation of Ultrasound—Part II -- V.1 Composite piezoelectric transducers -- V.2 Piezoelectric bending transducers -- V.3 Generation of high frequency ultrasound -- V.4 Concentration of ultrasound by focusing -- V.5 Generation of high vibrational amplitudes -- V.6 Generation of shear waves and Rayleigh waves -- V.7 Magnetostrictive generation of ultrasound -- V.8 Electrostatic ultrasound generators -- V.9 Mechanical methods -- VI Detection and Measurement of Ultrasound -- VI.1 Detection of ultrasound with extended piezo transducers, reciprocity -- VI.2 Electrostatic receivers -- VI.3 Ultrasound microphones, calibration -- VI.4 Mechanical detection -- VI.5 Thermal ultrasound detectors -- VI.6 Diffraction of light by ultrasound waves -- VI.7 Visualization of ultrasound -- VII Generation and Detection of Sound with Frequencies above 1 GHz (Hypersound) -- VII.1 Coherent methods for the generation and detection of hypersound -- VII.2 Phonons (sound quanta) in solids -- VII.3 Quantum acoustical interpretation of some effects of ultrasound -- VII.4 Generation of hypersound with heat pulses -- VII.5 Detection of hypersound with superconducting bolometers -- VII.6 Generation and detection of incoherent hypersound with superconducting tunnel contacts -- VII.7 Detection of ‘natural’ hypersound -- VIII Absorption of Ultrasound -- VIII. 1 Classical sound absorption in gases and liquids -- VIII.2 Molecular sound absorption in gases -- VIII.3 Sound absorption in liquids -- VIII.4 Sound absorption in solids -- VIII.5 Experimental methods for the determination of sound velocity and attenuation in the ultrasonic range -- IX Applications in Signal Processing and Measuring Techniques -- IX. 1 Ultrasonic delay lines -- IX.2 Rayleigh wave filters -- IX.3 Light modulation and light deflection -- IX.4 Other small-signal applications -- X Non-destructive Testing of Materials -- X.1 Survey of various testing methods -- X.2 Impulse echo method -- X.3 Frequencies and wave types -- X.4 Transducers for flaw detection -- X.5 Types of display -- X.6 Suitability of materials for testing -- X.7 Practical examples of ultrasonic flaw detection -- XI Application of Ultrasound in Medical Diagnostics -- XI.1 Acoustic properties of biological tissue -- XI.2 Impulse echo method -- XI.3 Typical applications of the impulse echo method in sonography -- XI.4 Doppler sonography -- XII Special Methods of Ultrasonic Imaging -- XII.1 Ultrasonic microscopy -- XII.2 Acoustic holography -- XII.3 Ultrasonic tomography -- XIII Cavitation -- XIII.1 Basic types of sonically induced cavitation -- XIII.2 Dynamics of a single cavity -- XIII.3 Cavitation nuclei and cavitation thresholds -- XIII.4 Real cavitation and some effects caused by it -- XIV Applications of High Intensity Ultrasound -- XIV.1 Ultrasonic cleaning -- XIV.2 Joining with ultrasound -- XIV.3 Machining -- XIV.4 Production of dispersions -- XIV.5 Further applications -- XIV.6 Medical therapy -- XV On the Possibility of Health Risks Caused by Ultrasound -- XV.1 Damage to tissue caused by diagnostic ultrasound -- XV.2 Damage caused by airborne ultrasound -- Notation.
Record Nr. UNINA-9910789201603321
Kuttruff Heinrich  
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1991
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ultrasonics : Fundamentals and Applications / / edited by H. Kuttruff
Ultrasonics : Fundamentals and Applications / / edited by H. Kuttruff
Autore Kuttruff Heinrich
Edizione [1st ed. 1991.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1991
Descrizione fisica 1 online resource (458 p. 20 illus.)
Disciplina 534.5/5
Soggetto topico Materials science
Physics
Characterization and Evaluation of Materials
Physics, general
ISBN 94-011-3846-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto I Introduction -- I.1 What is ultrasound? -- I.2 A few historical remarks -- I.3 Ultrasound in the living world -- I.4 Upper frequency limit of sound -- II Basic Concepts of Acoustics -- II.1 Sound fields and the physical quantities describing them -- II.2 Sound propagation in gases and liquids -- II.3 Sound waves in solids -- II.4 Reflection and refraction -- II.5 Doppler effect -- III Sound Radiation and Sound Diffraction -- III.1 Signals in time and frequency representation, linear systems -- III.2 The principle of point source synthesis, the moving piston -- III.3 Radiation from a circular piston -- III.4 Piston with non-uniform surface velocity -- III.5 Diffraction and scattering -- IV Generation of Ultrasound—Part I -- IV.1 The piezoelectric effect -- IV.2 Piezoelectric materials -- IV.3 Basic piezoelectric equations, electro-mechanical coupling factor -- IV.4 Dynamic characteristics of piezoelectric transducers operated in their thickness mode -- IV.5 Mechanical and electrical equivalent circuit of a piezoelectric transducer near its resonance -- IV.6 Practical design of piezoelectric ultrasound generators -- V Generation of Ultrasound—Part II -- V.1 Composite piezoelectric transducers -- V.2 Piezoelectric bending transducers -- V.3 Generation of high frequency ultrasound -- V.4 Concentration of ultrasound by focusing -- V.5 Generation of high vibrational amplitudes -- V.6 Generation of shear waves and Rayleigh waves -- V.7 Magnetostrictive generation of ultrasound -- V.8 Electrostatic ultrasound generators -- V.9 Mechanical methods -- VI Detection and Measurement of Ultrasound -- VI.1 Detection of ultrasound with extended piezo transducers, reciprocity -- VI.2 Electrostatic receivers -- VI.3 Ultrasound microphones, calibration -- VI.4 Mechanical detection -- VI.5 Thermal ultrasound detectors -- VI.6 Diffraction of light by ultrasound waves -- VI.7 Visualization of ultrasound -- VII Generation and Detection of Sound with Frequencies above 1 GHz (Hypersound) -- VII.1 Coherent methods for the generation and detection of hypersound -- VII.2 Phonons (sound quanta) in solids -- VII.3 Quantum acoustical interpretation of some effects of ultrasound -- VII.4 Generation of hypersound with heat pulses -- VII.5 Detection of hypersound with superconducting bolometers -- VII.6 Generation and detection of incoherent hypersound with superconducting tunnel contacts -- VII.7 Detection of ‘natural’ hypersound -- VIII Absorption of Ultrasound -- VIII. 1 Classical sound absorption in gases and liquids -- VIII.2 Molecular sound absorption in gases -- VIII.3 Sound absorption in liquids -- VIII.4 Sound absorption in solids -- VIII.5 Experimental methods for the determination of sound velocity and attenuation in the ultrasonic range -- IX Applications in Signal Processing and Measuring Techniques -- IX. 1 Ultrasonic delay lines -- IX.2 Rayleigh wave filters -- IX.3 Light modulation and light deflection -- IX.4 Other small-signal applications -- X Non-destructive Testing of Materials -- X.1 Survey of various testing methods -- X.2 Impulse echo method -- X.3 Frequencies and wave types -- X.4 Transducers for flaw detection -- X.5 Types of display -- X.6 Suitability of materials for testing -- X.7 Practical examples of ultrasonic flaw detection -- XI Application of Ultrasound in Medical Diagnostics -- XI.1 Acoustic properties of biological tissue -- XI.2 Impulse echo method -- XI.3 Typical applications of the impulse echo method in sonography -- XI.4 Doppler sonography -- XII Special Methods of Ultrasonic Imaging -- XII.1 Ultrasonic microscopy -- XII.2 Acoustic holography -- XII.3 Ultrasonic tomography -- XIII Cavitation -- XIII.1 Basic types of sonically induced cavitation -- XIII.2 Dynamics of a single cavity -- XIII.3 Cavitation nuclei and cavitation thresholds -- XIII.4 Real cavitation and some effects caused by it -- XIV Applications of High Intensity Ultrasound -- XIV.1 Ultrasonic cleaning -- XIV.2 Joining with ultrasound -- XIV.3 Machining -- XIV.4 Production of dispersions -- XIV.5 Further applications -- XIV.6 Medical therapy -- XV On the Possibility of Health Risks Caused by Ultrasound -- XV.1 Damage to tissue caused by diagnostic ultrasound -- XV.2 Damage caused by airborne ultrasound -- Notation.
Record Nr. UNINA-9910807839003321
Kuttruff Heinrich  
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1991
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui