top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biotechnological Applications in Industrial Waste Valorization / / edited by Vineet Kumar, Pradeep Verma
Biotechnological Applications in Industrial Waste Valorization / / edited by Vineet Kumar, Pradeep Verma
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIX, 503 p. 64 illus.)
Disciplina 628.5
660.6
Collana Interdisciplinary Biotechnological Advances
Soggetto topico Bioremediation
Chemical engineering
Refuse and refuse disposal
Microbial ecology
Sustainability
Environmental chemistry
Environmental Biotechnology
Chemical Engineering
Waste Management/Waste Technology
Environmental Microbiology
Environmental Chemistry
ISBN 981-9623-02-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Chapter 1: Biorefineries and waste valorization in integrated biorefinery concepts and applications -- Chapter 2: Bio-electrochemical systems for sustainable treatment of industrial wastewater: Current status and future prospects -- Chapter 3: Pharmaceutical waste valorization and bioremediation: Challenges and innovations -- Chapter 4: Biotechnological strategies for transforming pulp and paper industry waste into high-value products: A pathway to sustainable environmental management -- Chapter 5: Biotechnological advances in bioconversion of CO2 as an industrial waste to value-added products -- Chapter 6: Biotechnological interventions for textile waste management -- Chapter 7: Biotechnological approaches for agricultural waste management -- Chapter 8: Biolubricant production from waste: A new paradigm for environmental sustainability -- Chapter 9: Biotechnological techniques for recovery of renewable resources from municipal wastewater and value-added products development -- Chapter 10:Metabolic engineering for industrial waste valorization -- Chapter 11:Novel applications of microbial electrolysis cells in anaerobic digestion systems: Trends and Perspectives -- Chapter 12:Enzymatic approaches for tannery waste valorization -- Chapter 13:Microbial bioremediation for industrial waste valorization -- Chapter 14:Challenges and opportunities in biotechnological waste valorization.
Record Nr. UNINA-9910993929103321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Detection and Treatment of Emerging Contaminants in Wastewater / Sartaj Ahmad Bhat, Vineet Kumar, Fusheng Li, Pradeep Verma
Detection and Treatment of Emerging Contaminants in Wastewater / Sartaj Ahmad Bhat, Vineet Kumar, Fusheng Li, Pradeep Verma
Pubbl/distr/stampa United Kingdom : , : IWA Publishing, , 2024
Descrizione fisica 1 online resource
Soggetto topico Technology & Engineering / Mining
Science / Applied Sciences
Science / Environmental Science
Science
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910888048603321
United Kingdom : , : IWA Publishing, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic Waste Management : Policies, Processes, Technologies, and Impact
Electronic Waste Management : Policies, Processes, Technologies, and Impact
Autore Kumar Sunil
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (360 pages)
Altri autori (Persone) KumarVineet
ISBN 1-119-89154-X
1-119-89152-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910831185703321
Kumar Sunil  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic Waste Management : Policies, Processes, Technologies, and Impact
Electronic Waste Management : Policies, Processes, Technologies, and Impact
Autore Kumar Sunil
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (360 pages)
Altri autori (Persone) KumarVineet
Soggetto topico Electronic waste
Environmental impact analysis
ISBN 9781119891543
111989154X
9781119891529
1119891523
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electronic Waste Management -- Contents -- Preface -- Acknowledgment -- About the Editors -- List of Contributors -- 1 Electronic Waste Management in Developing Countries—The Sub-Saharan Africa Experience -- 2 Contextualizing Electronic Waste for Effective Management in Ghanaian Cities: Local Perspectives and Experiences -- 3 Multiomics Approaches on Extremophiles and Their Application in the Biological Management of E-waste -- 4 Worldwide E-waste Management Models: Delving into Pros and Cons and the Way Forward -- 5 Electronic Waste Management Strategy in a Circular/Control Economy -- 6 A Global Perspective on E-waste: From Cradle to Grave -- 7 The Impact of Electronic Waste and Its Implications for Soil, Air, and Water -- 8 The Environmental Fate of E-waste: Its Impact on Environmental Samples (Soil, Water, and Air) -- 9 Reuse and Recycling of Electronic Waste from a Global Solution Perspective -- 10 Circular Economy and the Development of Sustainable Products Through the Application of E-waste -- 11 Recovery of Non-precious Metals from WEEE Using Emerging Leachants -- 12 Waste Reduction Strategy: E-waste Recycling and Reuse Protocol -- 13 Effective Utilization of E-waste in Advanced Energy Technology Processes -- 14 Mechanical Effects of Recycling Plastics from Electronic Waste in Concrete: A Detailed View -- 15 Recovery of Rare Earth Elements and Critical Metals from Electronic Waste -- 16 Finite Element Analysis of Mortars with Recycled PC from Electronic Waste -- 17 Gamma Radiation Effects on Recycled e-PC: Bisphenol A Leaching -- 18 Hydrometallurgical Processing of Electronic Waste -- 19 Influence of Recycled e-Polycarbonate on Mortar Composites Mechanical and Thermal Study -- 20 Generation, Collection, and Recycling Policies of E-waste Across the Asian Region -- 21 Recent Innovations in Green Recycling Technologies of E-waste Management -- 22 Electronic Waste Recycling in Maintaining a Circular Economy -- 23 The E-waste Scenario: Analytical Techniques for Effective Management -- Index
Record Nr. UNINA-9911020466803321
Kumar Sunil  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies
Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies
Autore Bilal Muhammad
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (563 pages)
Altri autori (Persone) Romanholo FerreiraLuiz Fernando
IqbalHafiz M. N
KumarVineet
ISBN 9781119852117
9781119852100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Part 1 Fundamentals of Metagenomics and Bioremediation -- Chapter 1 Application of Bioremediation for Environmental Clean-Up: Issues, Recent Developments, and the Way Forward -- 1.1 Introduction -- 1.2 Bioremediation: A Sustainable Approach -- 1.2.1 In-Situ Bioremediation -- 1.2.2 Ex-Situ Bioremediation -- 1.3 Importance of Vegetation for Bioremediation -- 1.4 Application of Bioremediation to Clean Up Environmental Pollutants -- 1.4.1 Heavy Metals -- 1.4.2 Agrochemicals -- 1.5 Advantages and Disadvantages of Bioremediation Technology -- 1.6 Recent Advancements in Bioremediation Technology -- 1.7 Conclusion -- References -- Chapter 2 Omics in Biomethanation and Environmental Remediation -- 2.1 Introduction -- 2.2 Feedstocks Used -- 2.2.1 Biogas from the Sludge and Manure -- 2.2.2 Biogas from Solid Waste (MSW) -- 2.2.3 Food and Drink Waste used for Digestion -- 2.2.4 Feedstock from Agricultural Wastes -- 2.2.5 Biogas Yields and Feedstock Productivity -- 2.3 Microbiology and Biochemical Reactions in Anaerobic Digestions -- 2.3.1 Biochemistry in Anaerobic Digestion of Feedstock -- 2.4 Omics in Biomethanation and BiorRemediation -- 2.4.1 Bacterial and Archaeal Community Sequencing -- 2.4.2 PHA Screening for Production -- 2.4.3 Microbial Degradation of PHA -- 2.4.4 Proteomics Study on Kraft Lignin -- 2.4.5 Lignin/Aromatic Compound Degradation Proteins Expressed on Kraft Lignin -- 2.4.6 Other Significant Proteins Expressed on KL -- 2.4.7 Pathways for the Utilization of Lignin and PHA Metabolism -- 2.5 Role of Factors in Anaerobic Digestions in Biomethanation -- 2.5.1 Temperature -- 2.5.2 Redox Potential -- 2.5.3 C:N Ratio and Ammonium Inhibition -- 2.5.4 pH -- 2.6 Inhibitory Substances for Anaerobic Digestion.
2.7 Degradation and Bioremediation of Toxic Compounds for Enhanced Production of Biomethanation -- 2.7.1 Degradation of Lignin in the Process of Digestion -- 2.7.2 Degradation of Others -- 2.8 Circular Economy Perspective in Biogas Production -- 2.9 Conclusion -- References -- Chapter 3 Enzyme Immobilization: An Effective Platform to Improve the Reusability and Catalytic Efficiency of Enzymes -- 3.1 Introduction -- 3.2 Immobilization of Enzymes -- 3.3 Aspects Affecting the Performance of Immobilized Enzyme -- 3.3.1 Support Material -- 3.3.2 Organic Materials -- 3.3.3 Inorganic Materials -- 3.3.4 Immobilization Methods -- 3.3.5 Operation Conditions -- 3.4 Factors Contributing Toward the Immobilized Enzyme Activity Enhancement -- 3.4.1 Enzyme Inhibition Control -- 3.4.2 Enzyme Structure Rigidification -- 3.4.3 Medium and Substrate/Product Partition Effect -- 3.4.4 Soluble Enzyme Aggregation -- 3.4.5 Diffusional Limitations -- 3.4.6 More Active Conformation Retention -- 3.4.7 Co-immobilization -- 3.5 Immobilized Enzyme Applications -- 3.6 Conclusion -- References -- Chapter 4 Biostimulation and Bioaugmentation: Case Studies -- 4.1 Introduction -- 4.2 Biostimulation -- 4.3 Bioagumentation -- 4.3.1 Cell (Microorganism) Bioaugmentation (c-BA) -- 4.3.2 Factors Impacting Bioaugmentation -- 4.3.3 Gene Bioaugmentation (g-BA) -- 4.4 Commercially Available Bioremediation Agents -- 4.5 Conclusions -- References -- Chapter 5 Plant Microbe Synergism for Arsenic Stress Amelioration in Crop Plants -- 5.1 Introduction -- 5.2 Distribution of Arsenic in Soil and Water -- 5.2.1 Arsenic in Water -- 5.2.2 Arsenic in Soil -- 5.3 Methods of Arsenic Remediation -- 5.3.1 Physical Remediation -- 5.3.2 Chemical Remediation -- 5.4 Arsenic-Induced Toxicity in Crop Plants -- 5.5 Arsenic Remediation Through Mineral Fertilization -- 5.5.1 Application of Iron (Fe).
5.5.2 Application of Phosphorus -- 5.5.3 Application of Silicon -- 5.5.4 Application of Sulfur -- 5.5.5 Application of Zinc -- 5.6 Bioremediation -- 5.6.1 Phytoremediation of Heavy Metals -- 5.6.2 Micro-Remediation of As -- 5.6.3 Mechanism of As Micro-Remediation -- 5.7 Plant-Microbe Interaction and Their Role in Reducing As Toxicity in Crop Plants -- 5.7.1 Phosphate Solubilization -- 5.7.2 Silicon (Si) Solubilization -- 5.7.3 Auxin Production -- 5.7.4 Siderophore Production -- 5.7.5 Aminoacyclopropane-1-Carboxylate (ACC) Deaminase Production -- 5.7.6 Exopolysaccharide (EPS) Production -- 5.8 Plant-Microbe Interaction as a Boon for Arsenic Remediation -- 5.9 Microbial Methylation of Arsenic in Soil and its Reduced Uptake in Plants -- 5.10 Conclusion -- References -- Chapter 6 Metagenomic Characterization and Applications of Microbial Surfactants in Remediation of Potentially Toxic Heavy Metals for Environmental Safety: Recent Advances and Challenges -- 6.1 Introduction -- 6.2 Biosurfactants' Characteristics -- 6.2.1 Surface and Interface Activity -- 6.2.2 Temperature and pH Tolerance -- 6.2.3 Biodegradability -- 6.2.4 Low Toxicity -- 6.2.5 Antiadhesive Agent -- 6.2.6 Emulsion Formation Breaking -- 6.3 Classification of Biosurfactants -- 6.3.1 Classification Based on Molecular Weight -- 6.3.2 Classification Based on Chemical Structure -- 6.4 Screening of Microorganisms for Biosurfactants Production -- 6.4.1 Hemolytic Activity -- 6.4.2 Drop Collapsing Test -- 6.4.3 Oil Spreading Test -- 6.4.4 Emulsification Index Test -- 6.4.5 Blue Agar Plate or CTAB Agar Plate Method -- 6.4.6 Hydrocarbon Overlay Agar Method -- 6.4.7 Axisymmetric Drop Shape Analysis (ADSA) -- 6.4.8 Cell Surface Hydrophobicity Technique -- 6.4.9 Tensiometeric Measurement of SFT -- 6.4.10 Tilted Glass Slide Test -- 6.4.11 Direct Colony-Thin Layer Chromatographic (TLC) Technique.
6.5 Metagenomic Characterization of Biosurfactant-Producing Microorganisms -- 6.6 Biosynthesis of Biosurfactants -- 6.6.1 Glycolipid Biosurfactants -- 6.6.2 Lipopeptide Biosurfactants -- 6.6.3 HMW Biosurfactants/Bioemulsifiers (BS/BE) -- 6.7 Characterization of Biosurfactants -- 6.7.1 Thin-Layer Chromatography (TLC) -- 6.7.2 High-Pressure Liquid Chromatography (HPLC) -- 6.7.3 Gas Chromatography (GC) and Mass Spectroscopy (MS) -- 6.7.4 Infrared (IR) Spectroscopy -- 6.7.5 Nuclear Magnetic Resonance (NMR) -- 6.7.6 Fast Atom Bombardment-Mass Spectroscopy (FAB-MS) -- 6.8 Factors Influencing Biosurfactants Production -- 6.8.1 Carbon Sources -- 6.8.2 Nitrogen Source -- 6.8.3 Natural Elements -- 6.8.4 Salt Concentration -- 6.8.5 Aeration and Agitation -- 6.9 Applications of Biosurfactants in Heavy Metals Environmental Remediation -- 6.10 Challenges in Cost-Effective Production of Biosurfactants -- 6.11 Future Research Needs -- 6.12 Conclusions -- References -- Part 2 Metagenomics in Environmental Cleanup -- Chapter 7 Metagenomic Approaches Applied to Bioremediation of Xenobiotics -- 7.1 Introduction -- 7.2 Metagenomic Approaches in Bioremediation Processes -- 7.3 Metagenomics in the Hydrocarbon Degradation -- 7.4 Metagenomic Approaches in the Drugs Degradation -- 7.5 Metagenomic Approaches in the Dye Degradation -- 7.6 Metagenomic Approaches in the Pesticides Degradation -- 7.7 Metagenomics in Heavy Metal Biorremediation -- References -- Chapter 8 Omics Approaches for Microalgal Applications in Wastewater Treatment -- 8.1 Introduction -- 8.2 Concept on Microalgal Biofilms -- 8.2.1 Cultivation -- 8.2.2 Composition -- 8.2.3 Applications -- 8.3 Factors Influencing Nutrient Extraction and Microalgal Growth -- 8.4 Mechanism of Microalgal Remediation -- 8.4.1 Nutrient Uptake -- 8.4.2 Heavy Metal Extraction/Uptake -- 8.4.3 Removal of Coliform Bacteria.
8.4.4 Removal of Organic Pollutants -- 8.5 Multi-Omics Approach -- 8.5.1 Genomics -- 8.5.2 Metagenomics -- 8.5.3 Transcriptomics -- 8.5.4 Meta-transcriptomics -- 8.5.5 Proteomics -- 8.5.6 Meta-proteomics -- 8.5.7 Metabolomics -- 8.6 Conclusion -- References -- Chapter 9 Microbial Community Profiling in Wastewater of Effluent Treatment Plant -- 9.1 Source of Wastewater -- 9.2 Wastewater Treatment Plant -- 9.3 Wastewater Treatment Facilities Have a Wide Range of Microbial Diversity -- 9.4 Microbial Composition in WWTPs -- 9.4.1 Varieties of Bacterial Communities -- 9.5 Screening, Selection, and Identification of Microbial Communities -- 9.5.1 Chemotaxonomy-Based Direct Monitoring Methods -- 9.5.2 Monitoring Approaches Based on rRNA -- 9.5.3 Hybridization Methods -- 9.5.4 16S rRNA Sequencing in Wastewater Treatment and Water Quality Monitoring -- 9.5.5 Metagenomic Analysis -- 9.5.6 Next Generation Sequencing (NGS) Technology -- 9.5.7 Microbial Community Analysis by Metatranscriptomics and Metaproteomics -- 9.5.8 Metabolomic Analysis of Microbial Community -- 9.5.9 Approach Based on Marker-Gene -- 9.5.10 Pyrosequencing Technology -- 9.6 Health Problem for Wastewater Treatment Employees -- 9.6.1 Hydrogen Sulfide's Negative Consequences -- 9.6.2 Musculoskeletal Disorders -- 9.6.3 Leptospirosis -- 9.6.4 Hepatitis -- 9.6.5 Helicobacter pylori -- 9.7 Conclusion -- 9.8 Future Prospective -- References -- Chapter 10 Mining of Novel Microbial Enzymes Using Metagenomics Approach for Efficient Bioremediation: An Overview -- 10.1 Introduction -- 10.2 Omics for Microbial Enzymes in Bioremediation -- 10.2.1 Omics for Sequencing Microbial Diversity: The Early Era (Figure 10.1) -- 10.2.2 High Throughput Sequencing and Advances in Omics -- 10.3 Implementing Metagenomics for Énvironmental Remediations -- 10.3.1 Sequence-Based Metagenomics in Bioremediation.
10.3.2 Activity-Based Metagenomics for Remediation (Figure 10.2).
Record Nr. UNINA-9910646198403321
Bilal Muhammad  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Management of Micro and Nano-plastics in Soil and Biosolids : Fate, Occurrence, Monitoring, and Remedies / / edited by Sartaj Ahmad Bhat, Vineet Kumar, Fusheng Li, Sunil Kumar
Management of Micro and Nano-plastics in Soil and Biosolids : Fate, Occurrence, Monitoring, and Remedies / / edited by Sartaj Ahmad Bhat, Vineet Kumar, Fusheng Li, Sunil Kumar
Autore Bhat Sartaj Ahmad
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (451 pages)
Disciplina 333.7
Altri autori (Persone) KumarVineet
LiFusheng
KumarSunil
Soggetto topico Environmental management
Soil science
Pollution
Environmental Management
Soil Science
ISBN 9783031519673
3031519671
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Microplastic and nano plastic: a threat to the environment -- Chapter 2. Impact of microplastics and nanoplastics in the aquatic environment -- Chapter 3. Microplastics an emerging environmental issue: its bioremediation, challenges, and a future perspective -- Chapter 4. Micro-nanoplastics from Stormwater Runoffs to Water Bodies: An In-Depth Investigation -- Chapter 5. Micro-Nano-plastics in the Environment: Current Research and Trends -- Chapter 6. Beneath the Surface: Unraveling the Impact of Micro and Nano Plastics on Plant Performance -- Chapter 7. INTERACTION OF MICRO-NANO-PLASTICS AND HEAVY METALS IN SOIL SYSTEMS: MECHANISM AND IMPLICATION -- Chapter 8. Effects of micro-nanoplastics exposure to earthworms in the soil system -- Chapter 9. TOXICOLOGICAL EFFECTS OF MICRO AND NANO PLASTICS ON SOIL FAUNA: CURRENT RESEARCH, ADVANCES, AND FUTURE OUTLOOK -- Chapter 10. Long-term fate of micro/nanoplastics in Soil Systems and their impacts -- Chapter 11. Adsorption Behavior and Interaction of Micro-Nano Plastics in Soils and Aquatic Environment -- Chapter 12. Dynamics of biodegradable plastics in the process of food waste biotreatment and environmental risks of residual plastics fragments -- Chapter 13. Occurrence and Fate of Microplastics in Anaerobic Digestion of Dewatered Sludge -- Chapter 14. Micro-Nano-plastics in Sewage sludge: Sources, Occurrence, and Potential Environmental risks -- Chapter 15. Cleaning Up the Smallest Pollutants: The Potential of Microbial Degradation in Tackling Micro- and Nano-Plastic Pollution -- Chapter 16. Enzyme Assisted Biodegradation of Micro-Nanoplastics: Advances and Future Outlook on the Management of Plastic Pollution -- Chapter 17. Microbial Nanobioremediation of Micro-Nanoplastics: Current Strategies, Challenges and Future Prospects.
Record Nr. UNINA-9910853994303321
Bhat Sartaj Ahmad  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui