top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in aerial sensing and imaging / / edited by Sandeep Kumar [and five others]
Advances in aerial sensing and imaging / / edited by Sandeep Kumar [and five others]
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc.
Descrizione fisica 1 online resource (xiv, 415 pages) : illustrations, charts
Soggetto topico Imaging systems
Drone aircraft in remote sensing
Drone aircraft
ISBN 1-394-17551-5
1-394-17550-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Systematic Study on Aerial Images of Various Domains: Competences, Applications, and Futuristic Scope -- 1.1 Introduction -- 1.2 Literature Work -- 1.2.1 Based on Camera Axis -- 1.2.2 Based on Scale -- 1.2.3 Based on Sensor -- 1.3 Challenges of Object Detection and Classification in Aerial Images -- 1.4 Applications of Aerial Imaging in Various Domains -- 1.5 Conclusions and Future Scope -- 1.5.1 Conclusions -- 1.5.2 Future Scope -- References -- Chapter 2 Oriental Method to Predict Land Cover and Land Usage Using Keras with VGG16 for Image Recognition -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Materials and Methods -- 2.3.1 Dataset -- 2.3.2 Model Implemented -- 2.4 Discussion -- 2.5 Result Analysis -- 2.6 Conclusion -- References -- Chapter 3 Aerial Imaging Rescue and Integrated System for Road Monitoring Based on AI/ML -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Number of Accidents, Fatalities, and Injuries: 2016-2022 -- 3.3.1 Accidents Statistics in India -- 3.3.2 Accidents Statistics in Haryana -- 3.4 Proposed Methodology -- 3.4.1 ROI and Line Selection -- 3.4.2 Motion Detection -- 3.4.3 Single-Stage Clustering -- 3.4.4 Feature Fusion Process -- 3.4.5 Second-Stage Clustering -- 3.4.6 Tracking Objects -- 3.4.7 Classification -- 3.5 Result Analysis -- 3.6 Conclusion -- References -- Chapter 4 A Machine Learning Approach for Poverty Estimation Using Aerial Images -- 4.1 Introduction -- 4.2 Background and Literature Review -- 4.3 Proposed Methodology -- 4.3.1 Data Acquisition -- 4.3.2 Pre-Processing -- 4.3.3 Feature Extraction -- 4.3.4 Data Integration -- 4.3.5 Model Development -- 4.3.6 Validation -- 4.3.7 Visualization and Analysis -- 4.3.8 Policy and Program Development -- 4.4 Result and Discussion -- 4.5 Conclusion and Future Scope -- References.
Chapter 5 Agriculture and the Use of Unmanned Aerial Vehicles (UAVs): Current Practices and Prospects -- 5.1 Introduction -- 5.2 UAVs Classification -- 5.2.1 Comparison of Various UAVs -- 5.3 Agricultural Use of UAVs -- 5.4 UAVs in Livestock Farming -- 5.5 Challenges -- 5.6 Conclusion -- References -- Chapter 6 An Introduction to Deep Learning-Based Object Recognition and Tracking for Enabling Defense Applications -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Importance of Object Monitoring and Surveillance in Defense -- 6.2.2 Need for Object Monitoring and Surveillance in Defense -- 6.2.3 Object Detection Techniques -- 6.2.4 Object Tracking Techniques -- 6.3 Experimental Methods -- 6.3.1 Experimental Setup and Dataset -- 6.3.2 DataSetVISdrone 2019 -- 6.3.3 Experimental Setup -- 6.4 Results and Outcomes -- 6.4.1 Comparison Results -- 6.4.2 Training Results -- 6.5 Conclusion -- 6.6 Future Scope -- References -- Chapter 7 A Robust Machine Learning Model for Forest Fire Detection Using Drone Images -- 7.1 Introduction -- 7.2 Literature Review -- 7.3 Proposed Methodology -- 7.4 Result and Discussion -- 7.5 Conclusion and Future Scope -- References -- Chapter 8 Semantic Segmentation of Aerial Images Using Pixel Wise Segmentation -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed Method -- 8.3.1 Pixelwise Classification Method -- 8.3.2 Morphological Processing -- 8.4 Datasets -- 8.5 Results and Discussion -- 8.5.1 Analysis of the Proposed Method -- 8.6 Conclusion -- References -- Chapter 9 Implementation Analysis of Ransomware and Unmanned Aerial Vehicle Attacks: Mitigation Methods and UAV Security Recommendations -- 9.1 Introduction -- 9.2 Types of Ransomwares -- 9.3 History of Ransomware -- 9.4 Notable Ransomware Strains and Their Impact -- 9.4.1 CryptoLocker (2013) -- 9.4.2 CryptoWall (2014) -- 9.4.3 TeslaCrypt (2015) -- 9.4.4 Locky (2016).
9.4.5 WannaCry (2017) -- 9.4.6 NotPetya (2017) -- 9.4.7 Ryuk (2018) -- 9.4.8 REvil (2019) -- 9.4.9 Present-Day Ransomware Families -- 9.5 Mitigation Methods for Ransomware Attacks -- 9.6 Cybersecurity in UAVs (Unmanned Aerial Vehicles) -- 9.6.1 Introduction on FANETS -- 9.6.2 Network Security Concerning FANETs -- 9.6.3 UAV Security Enhancement -- 9.6.4 Limitations in UAVs -- 9.6.5 Future Scope -- 9.7 Experimental analysis of Wi-Fi Attack on Ryze Tello UAVs -- 9.7.1 Introduction -- 9.7.2 Methodology -- 9.8 Results and Discussion -- 9.9 Conclusion and Future Scope -- References -- Chapter 10 A Framework for Detection of Overall Emotional Score of an Event from the Images Captured by a Drone -- 10.1 Introduction -- 10.1.1 Need for Emotion Recognition -- 10.1.2 Applications of Drones in Deep Learning -- 10.2 Literature Review -- 10.3 Proposed Work -- 10.3.1 Extraction of Images from a Drone -- 10.3.2 Proposed CNN Model -- 10.4 Experimentation and Results -- 10.4.1 Dataset Description -- 10.5 Future Work and Conclusion -- References -- Chapter 11 Drone-Assisted Image Forgery Detection Using Generative Adversarial Net-Based Module -- 11.1 Introduction -- 11.2 Literature Survey -- 11.3 Proposed System -- 11.3.1 Common Forged Feature Network -- 11.3.2 Features Extraction -- 11.3.3 Features Classification and Classification Network -- 11.3.4 Label Prediction -- 11.3.5 Contrastive Learning -- 11.3.6 Binary Cross-Entropy Loss -- 11.4 Results -- 11.4.1 Experimental Settings -- 11.4.2 Performance Comparison -- 11.4.3 LBP Visualized Results -- 11.4.4 Training Convergence -- 11.5 Conclusion -- References -- Chapter 12 Optimizing the Identification and Utilization of Open Parking Spaces Through Advanced Machine Learning -- 12.1 Introduction -- 12.2 Proposed Framework Optimized Parking Space Identifier (OPSI) -- 12.2.1 Framework Components.
12.2.2 Learning Module: Adaptive Prediction of Parking Space Availability -- 12.2.3 System Design -- 12.2.4 Tools and Usage -- 12.2.5 Architecture -- 12.2.6 Implementation Techniques and Algorithms -- 12.2.7 Existing Methods and Workflow Model -- 12.2.8 Hyperparameter for OPSI -- 12.3 Potential Impact -- 12.3.1 Claims for the Accurate Detection of Fatigue -- 12.3.2 Similar Study and Results Analysis -- 12.4 Application and Results -- 12.4.1 Algorithm and Results -- 12.4.2 Implementation Using Python Modules -- 12.5 Discussion and Limitations -- 12.5.1 Discussion -- 12.5.2 Limitations -- 12.6 Future Work -- 12.6.1 Integration with Autonomous Vehicles -- 12.6.2 Real-Time Data Analysis -- 12.6.3 Integration with Smart Cities -- 12.7 Conclusion -- References -- Chapter 13 Graphical Password Authentication Using Python for Aerial Devices/Drones -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Methodology -- 13.4 A Brief Overview of a Drone and Authentication -- 13.4.1 Password Authentication -- 13.4.2 Types of Password Authentication Systems -- 13.4.3 Graphical Password Authentication -- 13.4.4 Advantages and Disadvantages of Graphical Passwords -- 13.5 Password Cracking -- 13.6 Data Analysis -- 13.7 Discussion -- 13.8 Conclusion and Future Scope -- References -- Chapter 14 A Study Centering on the Data and Processing for Remote Sensing Utilizing from Annoyed Aerial Vehicles -- 14.1 Introduction -- 14.2 An Acquisition Method for 3D Data Utilising Annoyed Aerial Vehicles -- 14.3 Background and Literature of Review -- 14.4 Research Gap -- 14.5 Methodology -- 14.6 Discussion -- 14.7 Conclusion -- References -- Chapter 15 Satellite Image Classification Using Convolutional Neural Network -- 15.1 Introduction -- 15.2 Literature Review -- 15.3 Objectives of this Research Work -- 15.3.1 Novelty of the Research Work -- 15.4 Description of the Dataset.
15.5 Theoretical Framework -- 15.6 Implementation and Results -- 15.6.1 Data Visualization -- 15.6.1.1 Class-Wise Data Count -- 15.6.1.2 Class-Wise Augmented Data Count -- 15.6.2 Implementation of MobileNetV3 -- 15.6.2.1 Visualization of a Sample of Training Images -- 15.6.2.2 Visualization of Executed Codes of MobileNetV3 -- 15.6.2.3 Training Results of MobileNetV3 -- 15.6.2.4 Classifications of Errors on Test Sets of MobileNetV3 -- 15.6.2.5 Confusion Matrix of MobileNetV3 -- 15.6.2.6 Classification Report of MobileNetV3 -- 15.6.3 Implementation of EfficientNetB0 -- 15.6.3.1 Visualization of a Sample of Training Images -- 15.6.3.2 Visualization of Executed Codes of EfficientNetB0 -- 15.6.3.3 Training Results of EfficientNetB0 -- 15.6.3.4 Classifications of Errors on Test Sets of EfficientNetB0 -- 15.6.3.5 Confusion Matrix of EfficientNetB0 -- 15.6.3.6 Classification Report of EfficientNetB0 -- 15.7 Conclusion and Future Scope -- References -- Chapter 16 Edge Computing in Aerial Imaging - A Research Perspective -- 16.1 Introduction -- 16.1.1 Edge Computing and Aerial Imaging -- 16.2 Research Applications of Aerial Imaging -- 16.2.1 Vehicle Imaging -- 16.2.2 Precision Agriculture -- 16.2.3 Environment Monitoring -- 16.2.4 Urban Planning and Development -- 16.2.5 Emergency Response -- 16.3 Edge Computing and Aerial Imaging -- 16.3.1 Research Perspective in Aerial Imaging -- 16.3.2 Edge Architectures -- 16.4 Comparative Analysis of the Aerial Imaging Algorithms and Architectures -- 16.5 Discussion -- 16.6 Conclusion -- References -- Chapter 17 Aerial Sensing and Imaging Analysis for Agriculture -- 17.1 Introduction -- 17.2 Experimental Methods and Techniques -- 17.3 Aerial Imaging and Sensing Applications in Agriculture -- 17.3.1 Assessing Yield and Fertilizer Response -- 17.3.2 Plant and Crop Farming -- 17.3.3 Soil and Field Analysis.
17.3.4 Weed Mapping and Management.
Record Nr. UNINA-9910877032103321
Hoboken, NJ : , : John Wiley & Sons, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Computing and Intelligent Systems : Proceedings of ICACM 2019 / / edited by Harish Sharma, Kannan Govindan, Ramesh C. Poonia, Sandeep Kumar, Wael M. El-Medany
Advances in Computing and Intelligent Systems : Proceedings of ICACM 2019 / / edited by Harish Sharma, Kannan Govindan, Ramesh C. Poonia, Sandeep Kumar, Wael M. El-Medany
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xiv, 637 pages) : illustrations
Disciplina 006.3
Collana Algorithms for Intelligent Systems
Soggetto topico Computational intelligence
Artificial intelligence
Algorithms
Pattern recognition
Computational Intelligence
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Pattern Recognition
ISBN 981-15-0222-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Intuitionistic Fuzzy Shannon Entropy Weight Based Multi Criteria Decision Model with TOPSIS to Analyse Security Risks and Select Online Transaction Method -- Chapter 2. Fermat Spiral Based Moth-Flame Optimization Algorithm for Object-Oriented Testing -- Chapter 3. A Comparative Study of Information Retrieval Using Machine Learning -- Chapter 4. Adaptive Background Subtraction Using Manual Approach for Static Images -- Chapter 5. Tweets Daily: Categorised News from Twitter -- Chapter 6. Compressing Meta Class Files through String Optimization -- Chapter 7. An Algorithm to Generate Largest Prime Number -- Chapter 8. Development of a Discretization Methodology for 2.5D Milling Toolpath optimization Using Genetic Algorithm -- Chapter 9. Machine Learning Based Prediction of PM 2.5 Pollution Level in Delhi -- Chapter 10. A Comparative Study of Load Balancing Algorithms in a Cloud Environment -- Chapter 11. Information Retrieval from Search Engine Using Particle Swarm Optimization -- Chapter 12. Genetic Algorithm Based Multi Objective Optimization Framework to Solve Travelling Salesman Problem -- Chapter 13. Design of Optimal PID Controller for Varied System Using Teaching-Learning-Based Optimization -- Chapter 14. Innovative Review on Artificial Bee Colony Algorithm and it’s Variants -- Chapter 15. Multi Linear Regression Model to Predict Correlation between IT Graduate Attributes for Employability using R. .
Record Nr. UNINA-9910484185503321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ambient Intelligence and Internet of Things : Convergent Technologies
Ambient Intelligence and Internet of Things : Convergent Technologies
Autore Mahmood Rashid
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (421 pages)
Altri autori (Persone) RajaRohit
KaurHarpreet
KumarSandeep
NagwanshiKapil Kumar
Soggetto genere / forma Electronic books.
ISBN 9781119821830
9781119821236
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Ambient Intelligence and Internet of Things: An Overview -- 1.1 Introduction -- 1.2 Ambient Intelligent System -- 1.3 Characteristics of AmI Systems -- 1.4 Driving Force for Ambient Computing -- 1.5 Ambient Intelligence Contributing Technologies -- 1.6 Architecture Overview -- 1.7 The Internet of Things -- 1.8 IoT as the New Revolution -- 1.9 IoT Challenges -- 1.10 Role of Artificial Intelligence in the Internet of Things (IoT) -- 1.11 IoT in Various Domains -- 1.12 Healthcare -- 1.13 Home Automation -- 1.14 Smart City -- 1.15 Security -- 1.16 Industry -- 1.17 Education -- 1.18 Agriculture -- 1.19 Tourism -- 1.20 Environment Monitoring -- 1.21 Manufacturing and Retail -- 1.22 Logistics -- 1.23 Conclusion -- References -- Chapter 2 An Overview of Internet of Things Related Protocols, Technologies, Challenges and Application -- 2.1 Introduction -- 2.1.1 History of IoT -- 2.1.2 Definition of IoT -- 2.1.3 Characteristics of IoT -- 2.2 Messaging Protocols -- 2.2.1 Constrained Application Protocol -- 2.2.2 Message Queue Telemetry Transport -- 2.2.3 Extensible Messaging and Presence Protocol -- 2.2.4 Advance Message Queuing Protocol (AMQP) -- 2.3 Enabling Technologies -- 2.3.1 Wireless Sensor Network -- 2.3.2 Cloud Computing -- 2.3.3 Big Data Analytics -- 2.3.4 Embedded System -- 2.4 IoT Architecture -- 2.5 Applications Area -- 2.6 Challenges and Security Issues -- 2.7 Conclusion -- References -- Chapter 3 Ambient Intelligence Health Services Using IoT -- 3.1 Introduction -- 3.2 Background of AML -- 3.2.1 What is AML? -- 3.3 AmI Future -- 3.4 Applications of Ambient Intelligence -- 3.4.1 Transforming Hospitals and Enhancing Patient Care With the Help of Ambient Intelligence -- 3.4.2 With Technology, Life After the COVID-19 Pandemic -- 3.5 COVID-19 -- 3.5.1 Prevention.
3.5.2 Symptoms -- 3.6 Coronavirus Worldwide -- 3.7 Proposed Framework for COVID-19 -- 3.8 Hardware and Software -- 3.8.1 Hardware -- 3.8.2 Heartbeat Sensor -- 3.8.3 Principle -- 3.8.4 Working -- 3.8.5 Temperature Sensor -- 3.8.6 Principle -- 3.8.7 Working -- 3.8.8 BP Sensor -- 3.8.9 Principle -- 3.8.10 Working -- 3.9 Mini Breadboard -- 3.10 Node MCU -- 3.11 Advantages -- 3.12 Conclusion -- References -- Chapter 4 Security in Ambient Intelligence and Internet of Things -- 4.1 Introduction -- 4.2 Research Areas -- 4.3 Security Threats and Requirements -- 4.3.1 Ad Hoc Network Security Threats and Requirements -- 4.3.1.1 Availability -- 4.3.1.2 Confidentiality -- 4.3.1.3 Integrity -- 4.3.1.4 Key Management and Authorization -- 4.3.2 Security Threats and Requirements Due to Sensing Capability in the Network -- 4.3.2.1 Availability -- 4.3.2.2 Confidentiality -- 4.3.2.3 Integrity -- 4.3.2.4 Key Distribution and Management -- 4.3.2.5 Resilience to Node Capture -- 4.3.3 Security Threats and Requirements in AmI and IoT Based on Sensor Network -- 4.3.3.1 Availability -- 4.3.3.2 Confidentiality -- 4.3.3.3 Confidentiality of Location -- 4.3.3.4 Integrity -- 4.3.3.5 Nonrepudiation -- 4.3.3.6 Fabrication -- 4.3.3.7 Intrusion Detection -- 4.3.3.8 Confidentiality -- 4.3.3.9 Trust Management -- 4.4 Security Threats in Existing Routing Protocols that are Designed With No Focus on Security in AmI and IoT Based on Sensor Networks -- 4.4.1 Infrastructureless -- 4.4.1.1 Dissemination-Based Routing -- 4.4.1.2 Context-Based Routing -- 4.4.2 Infrastructure-Based -- 4.4.2.1 Network with Fixed Infrastructure -- 4.4.2.2 New Routing Strategy for Wireless Sensor Networks to Ensure Source Location Privacy -- 4.5 Protocols Designed for Security Keeping Focus on Security at Design Time for AmI and IoT Based on Sensor Network -- 4.5.1 Secure Routing Algorithms.
4.5.1.1 Identity-Based Encryption (I.B.E.) Scheme -- 4.5.1.2 Policy-Based Cryptography and Public Encryption with Keyword Search -- 4.5.1.3 Secure Content-Based Routing -- 4.5.1.4 Secure Content-Based Routing Using Local Key Management Scheme -- 4.5.1.5 Trust Framework Using Mobile Traces -- 4.5.1.6 Policy-Based Authority Evaluation Scheme -- 4.5.1.7 Optimized Millionaire's Problem -- 4.5.1.8 Security in Military Operations -- 4.5.1.9 A Security Framework Application Based on Wireless Sensor Networks -- 4.5.1.10 Trust Evaluation Using Multifactor Method -- 4.5.1.11 Prevention of Spoofing Attacks -- 4.5.1.12 QoS Routing Protocol -- 4.5.1.13 Network Security Virtualization -- 4.5.2 Comparison of Routing Algorithms and Impact on Security -- 4.5.3 Inducing Intelligence in IoT Networks Using Artificial Intelligence -- 4.5.3.1 Fuzzy Logic-1 -- 4.5.3.2 Fuzzy Logic-2 -- 4.6 Introducing Hybrid Model in Military Application for Enhanced Security -- 4.6.1 Overall System Architecture -- 4.6.2 Best Candidate Selection -- 4.6.3 Simulation Results in Omnet++ -- 4.6 Conclusion -- References -- Chapter 5 Futuristic AI Convergence of Megatrends: IoT and Cloud Computing -- 5.1 Introduction -- 5.1.1 Our Contribution -- 5.2 Methodology -- 5.2.1 Statistical Information -- 5.3 Artificial Intelligence of Things -- 5.3.1 Application Areas of IoT Technologies -- 5.3.1.1 Energy Management -- 5.3.1.2 5G/Wireless Systems -- 5.3.1.3 Risk Assessment -- 5.3.1.4 Smart City -- 5.3.1.5 Health Sectors -- 5.4 AI Transforming Cloud Computing -- 5.4.1 Application Areas of Cloud Computing -- 5.4.2 Energy/Resource Management -- 5.4.3 Edge Computing -- 5.4.4 Distributed Edge Computing and Edge-of-Things (EoT) -- 5.4.5 Fog Computing in Cloud Computing -- 5.4.6 Soft Computing and Others -- 5.5 Conclusion -- References.
Chapter 6 Analysis of Internet of Things Acceptance Dimensions in Hospitals -- 6.1 Introduction -- 6.2 Literature Review -- 6.2.1 Overview of Internet of Things -- 6.2.2 Internet of Things in Healthcare -- 6.2.3 Research Hypothesis -- 6.2.3.1 Technological Context (TC) -- 6.2.3.2 Organizational Context (OC) -- 6.2.3.3 Environmental Concerns (EC) -- 6.3 Research Methodology -- 6.3.1 Demographics of the Respondents -- 6.4 Data Analysis -- 6.4.1 Reliability and Validity -- 6.4.1.1 Cronbach's Alpha -- 6.4.1.2 Composite Reliability -- 6.4.2 Exploratory Factor Analysis (EFA) -- 6.4.3 Confirmatory Factor Analysis Results -- 6.4.3.1 Divergent or Discriminant Validity -- 6.4.4 Structural Equation Modeling -- 6.5 Discussion -- 6.5.1 Technological Context -- 6.5.2 Organizational Context -- 6.5.3 Environmental Context -- 6.6 Conclusion -- References -- Chapter 7 Role of IoT in Sustainable Healthcare Systems -- 7.1 Introduction -- 7.2 Basic Structure of IoT Implementation in the Healthcare Field -- 7.3 Different Technologies of IoT for the Healthcare Systems -- 7.3.1 On the Basis of the Node Identification -- 7.3.2 On the Basis of the Communication Method -- 7.3.3 Depending on the Location of the Object -- 7.4 Applications and Examples of IoT in the Healthcare Systems -- 7.4.1 IoT-Based Healthcare System to Encounter COVID-19 Pandemic Situations -- 7.4.2 Wearable Devices -- 7.4.3 IoT-Enabled Patient Monitoring Devices From Remote Locations -- 7.4.3.1 Pulse Rate Sensor -- 7.4.3.2 Respiratory Rate Sensors -- 7.4.3.3 Body Temperature Sensors -- 7.4.3.4 Blood Pressure Sensing -- 7.4.3.5 Pulse Oximetry Sensors -- 7.5 Companies Associated With IoT and Healthcare Sector Worldwide -- 7.6 Conclusion and Future Enhancement in the Healthcare System With IoT -- References -- Chapter 8 Fog Computing Paradigm for Internet of Things Applications -- 8.1 Introduction.
8.2 Challenges -- 8.3 Fog Computing: The Emerging Era of Computing Paradigm -- 8.3.1 Definition of Fog Computing -- 8.3.2 Fog Computing Characteristic -- 8.3.3 Comparison Between Cloud and Fog Computing Paradigm -- 8.3.4 When to Use Fog Computing -- 8.3.5 Fog Computing Architecture for Internet of Things -- 8.3.6 Fog Assistance to Address the New IoT Challenges -- 8.3.7 Devices Play a Role of Fog Computing Node -- 8.4 Related Work -- 8.5 Fog Computing Challenges -- 8.6 Fog Supported IoT Applications -- 8.7 Summary and Conclusion -- References -- Chapter 9 Application of Internet of Things in Marketing Management -- 9.1 Introduction -- 9.2 Literature Review -- 9.2.1 Customer Relationship Management -- 9.2.2 Product Life Cycle (PLC) -- 9.2.3 Business Process Management (BPM) -- 9.2.4 Ambient Intelligence (AmI) -- 9.2.5 IoT and CRM Integration -- 9.2.6 IoT and BPM Integration -- 9.2.7 IoT and Product Life Cycle -- 9.2.8 IoT in MMgnt -- 9.2.9 Impacts of AmI on Marketing Paradigms -- 9.3 Research Methodology -- 9.4 Discussion -- 9.4.1 Research Proposition 1 -- 9.4.2 Research Proposition 2 -- 9.4.3 Research Proposition 3 -- 9.4.4 Research Proposition 4 -- 9.4.5 Research Proposition 5 -- 9.5 Results -- 9.4 Conclusions -- References -- Chapter 10 Healthcare Internet of Things: A New Revolution -- 10.1 Introduction -- 10.2 Healthcare IoT Architecture (IoT) -- 10.3 Healthcare IoT Technologies -- 10.3.1 Technology for Identification -- 10.3.2 Location Technology -- 10.3.2.1 Mobile-Based IoT -- 10.3.2.2 Wearable Devices -- 10.3.2.3 Ambient-Assisted Living (AAL) -- 10.3.3 Communicative Systems -- 10.3.3.1 Radiofrequency Identification -- 10.3.3.2 Bluetooth -- 10.3.3.3 Zigbee -- 10.3.3.4 Near Field Communication -- 10.3.3.5 Wireless Fidelity (Wi-Fi) -- 10.3.3.6 Satellite Communication -- 10.4 Community-Based Healthcare Services -- 10.5 Cognitive Computation.
10.6 Adverse Drug Reaction.
Record Nr. UNINA-9910646196503321
Mahmood Rashid  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence and Sustainable Computing : Proceedings of ICSISCET 2023 / / edited by Manjaree Pandit, M. K. Gaur, Sandeep Kumar
Artificial Intelligence and Sustainable Computing : Proceedings of ICSISCET 2023 / / edited by Manjaree Pandit, M. K. Gaur, Sandeep Kumar
Autore Pandit Manjaree
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (714 pages)
Disciplina 006.3
Altri autori (Persone) GaurM. K
KumarSandeep
Collana Algorithms for Intelligent Systems
Soggetto topico Computational intelligence
Electronic circuits
Cooperating objects (Computer systems)
Internet of things
Machine learning
Computational Intelligence
Electronic Circuits and Systems
Cyber-Physical Systems
Internet of Things
Machine Learning
ISBN 981-9703-27-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Contents -- About the Editors -- 1 A Novel Intelligence System for Hybrid Crop Suitable Landform Prediction Using Machine Learning Techniques and IoT -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Dataset Description -- 5 Feature Engineering -- 6 Experiments -- 6.1 Logistic Regression -- 6.2 K-Nearest Neighbours (KNN) -- 6.3 Extreme Gradient Boosting (XGBoost) -- 6.4 Implementation in Cloud -- 7 Results and Discussion -- 8 Conclusion -- 9 Future Work -- References -- 2 Indian Annual Report Assessment Using Large Language Models -- 1 Introduction -- 1.1 Problem Statement -- 1.2 Objective -- 1.3 Contribution -- 2 Related Work -- 3 Methodology -- 3.1 Dataset Preparation -- 3.2 Class Labels -- 4 Results -- 4.1 Fine-Tuning Language Model -- 4.2 Sentence Transformers
Record Nr. UNINA-9910851982603321
Pandit Manjaree  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence and Sustainable Computing : Proceedings of ICSISCET 2022 / / edited by Manjaree Pandit, M. K. Gaur, Sandeep Kumar
Artificial Intelligence and Sustainable Computing : Proceedings of ICSISCET 2022 / / edited by Manjaree Pandit, M. K. Gaur, Sandeep Kumar
Autore Pandit Manjaree
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (737 pages)
Disciplina 006.3
Altri autori (Persone) GaurM. K
KumarSandeep
Collana Algorithms for Intelligent Systems
Soggetto topico Computational intelligence
Embedded computer systems
Internet of things
Machine learning
Computational Intelligence
Embedded Systems
Internet of Things
Machine Learning
ISBN 981-9914-31-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Features Extraction and Analysis of Electro-Myogram Signals using Time, Frequency, and Wavelet Transform Methods -- Lycopersicon Crop Leaf Disease Identification using Deep Learning -- Performance Analysis of Satellite Image Classification Using Deep Learning Neural Network -- Text Visualization of Entire Corpus through Single document Input Tools.
Record Nr. UNINA-9910746996503321
Pandit Manjaree  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence-based Healthcare Systems / / edited by Manju, Sandeep Kumar, Sardar M. N. Islam
Artificial Intelligence-based Healthcare Systems / / edited by Manju, Sandeep Kumar, Sardar M. N. Islam
Autore Manju
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (208 pages)
Disciplina 362.1028563
Altri autori (Persone) KumarSandeep
IslamSardar M. N
Collana The Springer Series in Applied Machine Learning
Soggetto topico Artificial intelligence
Machine learning
Internet of things
Medical care
Artificial Intelligence
Machine Learning
Internet of Things
Health Care
ISBN 3-031-41925-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Schedule and Routing In Home Healthcare System Using Clustering Analysis and Multi-Objective Optimization -- Obesity level prediction using Multinomial Logistic Regression -- Importance of Feature Selection methods in Machine Learning-based Obesity Prediction -- A Clinical Decision Support System Using Machine Learning To Forecast The Risk Of Chronic Pulmonary Disease And Anthracosis -- Smart Healthcare: A Breakthrough in the growth of technologies -- A Multidisciplinary Explanation of Healthcare AI Uses, Trends and Possibilities -- Optimum Utilization Of Bed Resources In Hospitals-A Stochastic Approach -- Early-Detection of Diabetic Retinopathy using Deep Learning -- Performance Analysis of Memory-Efficient Vision Transformers in Brain Tumor Segmentation -- Unlocking New Possibilities in Drug Discovery: A GAN-based Approach -- A Systematic Review on ECG and EMG Biomedical Signal using Deep Learning Approaches -- Smart AI bot for healthcare Assistance -- AI-Driven Hospital Readmission Predictor for Diabetic Patients -- Gleason Grading System for Prostate Cancer diagnosis.
Record Nr. UNINA-9910755082503321
Manju  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Broadening the Genetic Base of Grain Cereals [[electronic resource] /] / edited by Mohar Singh, Sandeep Kumar
Broadening the Genetic Base of Grain Cereals [[electronic resource] /] / edited by Mohar Singh, Sandeep Kumar
Edizione [1st ed. 2016.]
Pubbl/distr/stampa New Delhi : , : Springer India : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (IX, 275 p. 16 illus., 13 illus. in color.)
Disciplina 630
Soggetto topico Agriculture
Plant genetics
Plant Genetics and Genomics
ISBN 81-322-3613-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Wheat -- 3. Rice -- 4. Maize -- 5. Barley -- 6. Oats -- 7. Sorghum -- 8. Pearl Millet -- 9. Finger Millet -- 10. Foxtail and Barnyard Millets.
Record Nr. UNINA-9910253892003321
New Delhi : , : Springer India : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 004.019
Soggetto topico Algorithms
Human-computer interaction
Human behavior
Cognition
Soggetto genere / forma Electronic books.
ISBN 1-119-79208-8
1-119-79210-X
1-119-79209-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555075503321
Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 004.019
Soggetto topico Human-computer interaction
ISBN 1-119-79208-8
1-119-79210-X
1-119-79209-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830652603321
Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fault Prediction Modeling for the Prediction of Number of Software Faults / / by Santosh Singh Rathore, Sandeep Kumar
Fault Prediction Modeling for the Prediction of Number of Software Faults / / by Santosh Singh Rathore, Sandeep Kumar
Autore Rathore Santosh Singh
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIII, 78 p. 8 illus., 1 illus. in color.)
Disciplina 005.1
Collana SpringerBriefs in Computer Science
Soggetto topico Software engineering
Computer industry
Software Engineering
The Computer Industry
ISBN 981-13-7131-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Techniques used for the Prediction of Number of Faults -- Homogeneous Ensemble Methods for the Prediction of Number of Faults -- Linear Rule based Ensemble Methods for the prediction of Number of Faults -- Non-Linear Rule based Ensemble Methods for the prediction of Number of Faults -- Conclusions.
Record Nr. UNINA-9910350229603321
Rathore Santosh Singh  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui