Advancements in Bio-Systems and Technologies for Wastewater Treatment |
Autore | Pandit Soumya |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2024 |
Descrizione fisica | 1 online resource (334 pages) |
Altri autori (Persone) |
KumarLakhan
MathuriyaAbhilasha Singh JadhavDipak Ashok RaySubhasree |
Collana | Water Science and Technology Library |
ISBN | 3-031-58331-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- 1 Biological Wastewater Treatment -- 1.1 Introduction -- 1.2 Biological Wastewater Treatment -- 1.3 Techniques Used -- 1.3.1 Activated Sludge Process -- 1.3.2 Trickling Filters -- 1.3.3 Rotating Biological Contactors -- 1.3.4 Anaerobic Biological Wastewater Treatment -- 1.4 Monitoring and Control of Biological Treatment -- 1.5 Biological Treatment in Industrial Settings -- 1.6 Technological Advancements -- References -- 2 Nanoremediation to Fight Water Pollution -- 2.1 Introduction -- 2.2 Synthetic Approaches to Obtain Nanomaterials -- 2.3 Nanomaterials as Water Pollution Remediators -- 2.4 Conclusion -- 2.5 Future Perspectives -- References -- 3 Membrane Bioreactors -- 3.1 Introduction -- 3.2 Working of an MBR -- 3.3 Configurations of an MBR -- 3.4 Types of MBR -- 3.5 Membranes -- 3.5.1 Membrane Materials -- 3.5.2 Membrane Geometrics -- 3.6 Membrane Characteristics -- 3.6.1 Pore Size Distribution -- 3.6.2 Hydrophilicity -- 3.6.3 Electric Charge -- 3.6.4 Surface Roughness -- 3.7 Membrane Fouling -- 3.8 Challenges Associated with MBR -- 3.9 Applications -- 3.9.1 Wastewater Treatment -- 3.9.2 Water Recycling -- 3.9.3 Zero Liquid Discharge -- 3.10 Conclusion -- References -- 4 Recent Advances in the Application of Biosurfactants in Wastewater Treatment -- 4.1 Introduction -- 4.2 Structure and Genesis of Microbial Surface-Active Compounds -- 4.3 Microbial Biosurfactant Production -- 4.4 Microbial Fermentation of Biosurfactants -- 4.4.1 Biosurfactants for Waste Water Treatment -- 4.4.2 Biosurfactant-Facilitated Alginate-Biochar Beads Containing Bacteria that Break Down Polycyclic Aromatic Hydrocarbons (PAHs) -- 4.4.3 Biosurfactant Molecule Derived from Bacillus safensis YKS2 by Using Directed Metagenomic Approach -- 4.4.4 Carbon Nanotube (CNT) Treatment Integrated with Biosurfactants.
4.4.5 Magnetic Removal Techniques Integrated with Biosurfactant -- 4.4.6 Biosurfactant Modified Zeolites (BSMZs) -- 4.4.7 Enhanced Ultra-Filtration by Micellar (MEUF) -- 4.5 Future Perspective -- 4.6 Conclusion -- References -- 5 Microalgal Treatment of Wastewater and Production of Value-Added Products -- 5.1 Introduction -- 5.2 Microalgae and Their Marvel -- 5.3 Wastewater Treatment by Microalgae -- 5.3.1 Municipal Wastewater -- 5.3.2 Agricultural Wastewater -- 5.3.3 Industrial Wastewater -- 5.4 Mechanism of Nutrient Removal by Microalgal Treatment -- 5.4.1 Carbon -- 5.4.2 Nitrogen -- 5.4.3 Phosphorus -- 5.5 Production of Value-Added Products -- 5.5.1 Production of Biofertilizers -- 5.5.2 Production of Biochar -- 5.5.3 Bioenergy from Algae -- 5.5.4 Microalgal Hydrogen Production -- 5.5.5 Production of Secondary Metabolites from Algae -- 5.6 Biotic and Abiotic Factors Influencing the Treatment -- 5.6.1 Bacteria -- 5.6.2 Industrial Contaminants -- 5.6.3 pH -- 5.6.4 Temperature and Light -- 5.7 Conclusion -- References -- 6 Mitigating Water Pollution: The Synergy of Phytoremediation and Constructed Wetland Technology -- 6.1 Introduction -- 6.2 Phytoremediation Approaches in Wastewater Remediation and Ecosystem Restoration -- 6.3 Types and Significance of Constructed Wetlands in Phytoremediation of Wastewater -- 6.4 Optimizing Wastewater Treatment Efficiency: Constructed Wetland Mechanisms and Improvement Considerations -- 6.5 Significance of Aquatic Plants as a Nature- Based Solution in Constructed Wetlands -- 6.6 Application of Constructed Wetlands for Treatment of Different Wastewaters: -- 6.7 Role of Constructed Wetlands in Treating Municipal Water: -- 6.8 Role of Constructed Wetlands in Treating Textile Wastewater: -- 6.9 Role of Constructed Wetlands in Treating Landfills Leachate: -- 6.10 Conclusion -- References. 7 Environmental Sustainability Assessment of Wastewater Treatment Methods: An LCA Approach -- 7.1 Introduction -- 7.2 Methodology -- 7.2.1 Goal and Scope Definition -- 7.2.2 Life Cycle Inventory -- 7.2.3 Life Cycle Impact Assessment -- 7.3 Result and Discussion -- 7.3.1 Global Warming Potential (GWP) -- 7.3.2 Human Toxicity Potential (HTP) -- 7.3.3 Abiotic Depletion Potential (ADP) -- 7.3.4 Ecotoxicity Potential (EP) -- 7.3.5 Acidification Potential (AP) -- 7.3.6 Eutrophication Potential (EUP) -- 7.3.7 Ozone Depletion Potential (ODP) -- 7.3.8 Uncertainty -- 7.4 Conclusion -- References -- 8 From Linear Economy to Circular Bio-economy: A Paradigm Shift in Wastewater Management -- 8.1 Introduction -- 8.1.1 Linear Economy -- 8.1.2 What is Circular Economy? -- 8.1.3 Linear Economy Versus Circular Economy -- 8.1.4 What is Bio-economy? -- 8.1.5 Relation Between Circular Economy and Bio economy -- 8.1.6 Need of a Circular Bio Economy -- 8.2 Development of Bioeconomic Strategies -- 8.3 Sewage to Safe Water -- 8.4 Sustainability in Water Management -- 8.5 Wastewater Management Principles -- 8.6 Wastewater: Sources and Composition -- 8.7 Wastewater Treatment Techniques -- 8.8 Advancement in Wastewater Treatment for Environmental Sustainability -- 8.9 Microbes in Waste Management -- 8.10 Measurement of Other Harmful Chemicals: Mercurial Purifiers -- 8.11 Fuel from Wastewater: A Step Towards Circular Bio Economy -- 8.12 Algae and Wastewater -- 8.13 Conclusion -- References -- 9 Anaerobic Digestion and Electromethanogenesis -- 9.1 Introduction -- 9.2 Processes for Anaerobic Digestion -- 9.3 Hydrolysis -- 9.4 Acidogenesis -- 9.5 Acetogenesis -- 9.6 Methanogenesis -- 9.7 Percentage Composition of Methane from Anaerobic Digester -- 9.8 Process Parameters of Anaerobic Digester -- 9.9 Methods of Accelerating the AD. 9.10 Non-Biological Conductive Materials Used to Stimulate Electron Transfer -- 9.11 Combining MES with AD for Improving Microbial Interaction -- 9.12 Types of Anaerobic Digesters Used for Methane Production -- 9.13 The Operating Temperature -- 9.14 Variation in Feedstock -- 9.15 Based on Wet and Dry Solids -- 9.16 Batch Flow and Continuous Flow -- 9.16.1 Batch Digesters -- 9.16.2 Continuous Digesters -- 9.16.3 Stand-Alone Digesters -- 9.16.4 On-Farm Digester -- 9.16.5 Design of the Anaerobic Digester -- 9.17 Recent Advancement in Anaerobic Digester -- 9.18 Biofuel -- 9.19 Bio-electricity -- 9.20 Feedstock for Anaerobic Digester -- 9.21 Effect of Anaerobic Digestion on the Environment -- 9.22 Material Factors and Configuration -- 9.22.1 Anode Material -- 9.22.2 Cathode Material -- 9.22.3 Membrane -- 9.22.4 Cell Configuration -- 9.23 Single Chamber Configuration -- 9.24 Two Chamber Configuration -- 9.25 Microorganisms Involved in the Process of Electromethanogenesis -- 9.26 Operating Parameters -- 9.27 Applied Voltage and Set Potential -- 9.28 Temperature -- 9.29 Ph -- 9.30 Substrate -- 9.31 Current Density -- 9.32 Applications of Electromethanogenesis -- 9.33 For Upgrading of Biogas -- 9.34 Waste Treatment Coupled to Electromethanogenesis -- 9.35 Conclusion and Challenges Conclusion -- References -- 10 Removal of Environmental Pollutants from Industrial Wastewater Using Conventional, Advanced Biotechnological Wastewater Treatment Processes -- 10.1 Introduction -- 10.2 Toxic Effects of Wastewater on the Environment -- 10.2.1 Habitat and Water Contamination -- 10.2.2 Soil Degradation -- 10.2.3 Aquatic Life -- 10.2.4 Water Bodies -- 10.2.5 Squalor -- 10.3 Use of Nanotechnology in Environmental Remediation -- 10.4 Bioremediation -- 10.4.1 Biological Remediation is Mainly Classified into Two Types -- 10.4.2 Types of Bioremediation Methods. 10.4.3 Technologies Can Be Classified as In Situ or Ex-Situ -- 10.5 Ligninolytic Enzymes in Degradation and Decolorization of Pulp and Paper Industry Wastewater -- 10.6 Biological Treatment of Paper and Pulp Industry Effluent -- 10.6.1 Microbial Lignin Degradation Lignin -- 10.6.2 Bacterial Degradation Lignin -- 10.6.3 Brown-Rot Fungi Brown-Rot Fungi -- 10.6.4 White-Rot Fungi White-Rot Fungi -- 10.7 Different Categories of Wastewater Based on Various Components Dissolved in It -- 10.7.1 Characteristics of Wastewaters -- 10.8 A Proactive Approach to Conjugate Both Traditional as Well as Biotechnological Approaches in Order to Start Sorting and Treating Wastewater -- 10.8.1 Understanding Biotechnology -- 10.8.2 Use of Biotechnology in Sewage Treatment -- 10.9 Benefits of Biotechnology -- 10.10 Role of Microbiology and Molecular Biology on Wastewater Treatment -- 10.10.1 Fluorescent In Situ Hybridization (FISH) -- 10.10.2 Microarray -- 10.10.3 Quantitative PCR (qPCR) -- References -- 11 Bio-Degradation of Phenol and Phenolic Compounds -- 11.1 Introduction -- 11.1.1 Microorganisms Capable of Degrading Phenol and Phenolic Compounds -- 11.1.2 Aerobic Biodegradation of Phenol and Phenolic Compounds -- 11.1.3 Anaerobic Biodegradation of Phenol and Phenolic Compounds -- 11.1.4 Degradation of Phenol and Phenolic Compounds via Fungi -- 11.1.5 Degradation of Phenol and Phenolic Compounds via Algae -- 11.1.6 Factors Affecting Degradation of Phenol and Phenolic Compounds -- 11.1.7 The Effect of pH -- 11.1.8 The Effect of Temperature -- 11.1.9 Effect of Dissolved Oxygen Concentration -- 11.1.10 Effect of Additional Carbon Sources on Phenol Degradation -- 11.1.11 Degradation or Removal of Phenol from Wastewater -- 11.1.12 Reactors Used in Phenol Biodegradation -- 11.2 Challenges and Future Prospects -- 11.3 Conclusion -- References. 12 Concepts, Techniques, and Current Advances of the Membrane Biofilm Reactor (MBfR) for the Behavior of Industrial Wastewater. |
Record Nr. | UNINA-9910878053403321 |
Pandit Soumya | ||
Cham : , : Springer International Publishing AG, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities [[electronic resource] /] / edited by Maulin P. Shah, Navneeta Bharadvaja, Lakhan Kumar |
Autore | Shah Maulin P |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (501 pages) |
Disciplina | 551.48 |
Altri autori (Persone) |
BharadvajaNavneeta
KumarLakhan |
Collana | Environmental Science and Engineering |
Soggetto topico |
Water
Hydrology Biomaterials Nanotechnology Green chemistry Sustainability Environmental chemistry Green Chemistry Environmental Chemistry |
ISBN | 3-031-45956-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Bionanotechnology: Concepts, historical developments, and applications -- Biogenic nanomaterials: Synthesis, characterization, and applications -- Biogenic synthesis of nanomaterials: Plant diversity -- Biogenic synthesis of nanomaterials: Microbial diversity- Algae, bacteria, fungi, and others -- Biogenic synthesis of nanomaterials: Bioactive compounds as reducing, and capping agents -- Role of bioactive compounds in synthesis of nanomaterials: insights -- Biogenic nanomaterials as antimicrobial agents -- Nanomaterials induced cell disruption: An insight into mechanism -- Nanomaterials in drug delivery -- Biogenic nanomaterials for degradation of organic and inorganic pollutants -- Biogenic nanomaterials as catalyst for photocatalytic dye degradation -- Biogenic nanomaterials as adsorbents for heavy metal remediation -- Biogenic nanomaterials for remediation of Polyaromatic Hydrocarbons -- Biogenic nanomaterials for remediation of pharmaceutical products -- Biogenic nanomaterials for remediation of biocides-insecticides, pesticides and others -- Metal nanoparticles and algal lipid synthesis: An insight -- Metal nanoparticles and microbial (algal) metabolism -- Nanomaterials to enhance algal lipid productivity: Recent advancements -- Biogenic nanomaterials as fuel additives -- Bionanotechnology: Opportunities and challenges. |
Record Nr. | UNINA-9910799243903321 |
Shah Maulin P | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent Trends and Developments in Algal Biofuels and Biorefinery |
Autore | Bharadvaja Navneeta |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2024 |
Descrizione fisica | 1 online resource (456 pages) |
Disciplina | 662.88 |
Altri autori (Persone) |
KumarLakhan
PanditSoumya BanerjeeSrijoni AnandRaksha |
Collana | Environmental Science and Engineering Series |
ISBN |
9783031523199
9783031523182 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- 1 Biorefinery for Microalgal Biomass at an Industrial Production Scale -- 1.1 Introduction -- 1.1.1 Microalgal Chemical Components -- 1.1.2 Cultivation of Microalgae -- 1.2 Microalgae-Derived Products and Their Applications -- 1.2.1 Lipids as Feedstock for Producing Biodiesel -- 1.2.2 Protein-Utilization in Feed and Food Industry -- 1.2.3 Pigments-For Cosmetic and Pharmaceutical Industry -- 1.2.4 Carbohydrates-For Producing Bioethanol -- 1.2.5 Additional Biofuels Derived from Microalgae -- 1.2.6 Other Microalgal Applications -- 1.3 Microalgal Extracellular Metabolites -- 1.3.1 Allelopathic Chemicals -- 1.3.2 Exopolysaccharides -- 1.3.3 Extracellular Phytohormones -- 1.3.4 Extracellular Proteins -- 1.3.5 Organic Acids -- 1.4 Microalgal Biorefinery -- 1.5 Future Prospective -- 1.6 Conclusion -- References -- 2 Algal Biorefinery to Produce High-Value Carotenoids and Bioenergy -- 2.1 Introduction -- 2.2 Food vs Feed Debate -- 2.2.1 Generations of Biofuels: A Potential Threat for Food Security -- 2.2.2 Potential Ways to Address the Food Security Concern -- 2.3 Challenges in Commercialization of Algal Biofuel -- 2.4 Natural vs Synthetic Carotenoids -- 2.5 Astaxanthin -- 2.5.1 Astaxanthin Production -- 2.5.2 Astaxanthin Extraction -- 2.5.3 Astaxanthin Based Bioenergy Producing Algal Biorefinery -- 2.6 Lutein -- 2.6.1 Lutein Production -- 2.6.2 Lutein Extraction -- 2.6.3 Lutein Based Bioenergy Producing Algal Biorefinery -- 2.7 Conclusions -- References -- 3 Low-Cost Microalgae Cultivation Methods -- 3.1 Introduction -- 3.2 Cultivation Methods -- 3.3 The Importance of Pretreatments to Reduce Costs of Subsequent Processes -- 3.4 Bioproducts Obtained from Microalgal Biomass -- 3.4.1 Biofuels -- 3.4.2 Pharmaceutical Products -- 3.4.3 Bioplastics -- 3.4.4 Bioherbicides and Biofertilizers.
3.5 Use of Microalgae for Environmental Purposes -- 3.6 Conclusion -- References -- 4 A Continuous System of Biofuel Production from Microalgal Biomass -- 4.1 Introduction -- 4.2 Cultivation System of Microalgal Biomass -- 4.2.1 Open Pond Cultivation System -- 4.2.2 Closed Cultivation System -- 4.2.3 Microalgae Cultivation Using Photobioreactor in Batch, Semi-continuous and Continuous Mode -- 4.3 Harvesting of Microalgal Biomass for Continuous Biofuel Production -- 4.3.1 Centrifugation -- 4.3.2 Filtration -- 4.3.3 Sedimentation -- 4.3.4 Flocculation -- 4.3.5 Flotation -- 4.4 Technique Required for Conversion of Microalgal Biomass into Biofuel -- 4.4.1 Physico-chemical Conversion -- 4.4.2 Biochemical Conversion -- 4.4.3 Thermochemical Conversion -- 4.5 Application -- 4.5.1 Microalgae Used as Human Food -- 4.5.2 Uses in Cosmetics -- 4.5.3 Uses in Biofertilizer -- 4.5.4 Uses in Pharmaceuticals -- 4.5.5 Uses in Aquaculture/Animal Feed -- 4.6 Future Prospect -- 4.7 Conclusion -- References -- 5 Development of Cost-Effective High Yielding Cell Disruption Techniques for Microalgae -- 5.1 Introduction -- 5.2 Types of Microalgal Cell Disruption -- 5.2.1 Mechanical Procedure -- 5.2.2 Non Mechanical Procedure -- 5.3 Conclusion and Future Perspectives -- References -- 6 Lipid Extraction Methods from Wet Microalgal Biomass -- 6.1 Introduction -- 6.2 Algae as a Source of Energy -- 6.3 Pre-Treatment of Algae -- 6.4 Lipid Extraction Techniques -- 6.4.1 Mechanical Approach -- 6.4.2 Solvent-Based Approach -- 6.4.3 Solvent-Free Approach -- 6.5 Conclusion -- 6.6 Future Directions -- References -- 7 Simultaneous Extraction, Separation and Characterization of Biomolecules from Microalgal Biomass -- 7.1 Introduction -- 7.2 Extraction of Biomolecules from Microalgal Biomass -- 7.2.1 Organic Solvent Extraction -- 7.2.2 Alternative Solvent Extraction. 7.2.3 Supercritical Fluids Extraction -- 7.2.4 Microwave-Assisted Extraction (MAE) -- 7.2.5 Ultrasound-Assisted Extraction -- 7.2.6 Pressurized Liquid Extraction (PLE) -- 7.2.7 Enzyme-Assisted Extraction -- 7.2.8 Electrical Pre-Treatment Extraction -- 7.3 Separation of Biomolecules from Microalgal Biomass -- 7.3.1 Electrophoresis -- 7.3.2 Membrane Separation Technique -- 7.3.3 Ultracentrifugation -- 7.3.4 Aqueous Two-Phase Method -- 7.3.5 Phase Partitioning -- 7.3.6 Ammonium Sulfate Precipitation -- 7.4 Characterization of Biomolecules from Microalgal Biomass -- 7.4.1 Supercritical Fluid Chromatography -- 7.4.2 Column Chromatography -- 7.4.3 Permeation Chromatography -- 7.4.4 Ion-Exchange Chromatography -- 7.4.5 Affinity Chromatography -- 7.4.6 Thin-Layer Chromatography -- 7.4.7 High-Performance Liquid Chromatography -- 7.4.8 Counter Current Chromatography -- 7.4.9 Gas Chromatography -- 7.5 Conclusion -- References -- 8 Lipid Extraction Methods from Wet Microalgal Biomass -- 8.1 Introduction -- 8.2 Lipid and Algal Biomass as a Source of Bioenergy -- 8.3 Total Lipid Extraction Methods -- 8.3.1 Folch Method -- 8.3.2 Bligh and Dyer Method -- 8.3.3 Extraction of All Classes of Lipids -- 8.3.4 Superior Solvent Extraction Methods -- 8.3.5 In Situ Lipid Hydrolysis and Supercritical in Situ Transesterification -- 8.4 Algal Oil Extraction-A Mechanical Approach -- 8.4.1 Bead Beating -- 8.4.2 Expeller Press -- 8.4.3 Microwave -- 8.4.4 Ultrasonic-Assisted Extraction -- 8.4.5 Algal Oil Extraction Using Electroporation -- 8.5 A Novel Initiative by an Industry to Extract Algal Lipids -- 8.5.1 Osmotic Pressure Method -- 8.5.2 Solvent-Free Extraction Methods for Algal Biomass -- 8.5.3 Enzyme-Assisted Extraction -- 8.5.4 Isotonic Extraction Method -- 8.6 Prospects and Conclusion -- References. 9 Simultaneous Extraction, Separation, and Characterization of Biomolecules from Microalgal Biomass -- 9.1 Background -- 9.2 Cell Disruption Methods -- 9.2.1 Mechanical and Physical Methods -- 9.2.2 Non-Mechanical Methods -- 9.3 Techniques for Destroying Microalgal Cells and Collecting Their Components -- 9.3.1 Organic Solvent Extraction of Biomolecules -- 9.3.2 Alternative Solvents Extraction -- 9.3.3 Supercritical Fluid Extraction -- 9.4 Methods of Analysis of Biomolecules from Microalgae -- 9.4.1 Supercritical Fluid Chromatography -- 9.4.2 Column Chromatography -- 9.4.3 Gel Filtration Chromatography -- 9.4.4 Ion-Exchange Chromatography -- 9.4.5 Affinity Chromatography -- 9.4.6 Thin-Layer Chromatography -- 9.4.7 High-Performance Liquid Chromatography -- 9.4.8 Counter Current Chromatography -- 9.4.9 Gas Chromatography -- 9.5 Separation and Purification Approaches -- 9.5.1 Electrophoresis -- 9.5.2 Membrane Separation Processes -- 9.5.3 Ultrafiltration -- 9.5.4 Electro-Membrane Filtration -- 9.5.5 Aqueous Two-Phase Systems -- 9.5.6 Three Phase Partitioning -- 9.5.7 Ammonium Sulfate Precipitation -- 9.6 Conclusion -- References -- 10 Economic Environment Friendly and Low-Cost Lipid Extraction Methods From Microalgae -- 10.1 Introduction -- 10.2 Microalgae as Source of Biofuel -- 10.3 Biochemical Composition of Microalgal Biomass -- 10.4 Types of Biofuels -- 10.5 Biodiesel from Microalgae -- References -- 11 Cost-Effective Downstream Processing of Algal Biomass for Industrial-Scale Biofuels Production -- 11.1 Introduction -- 11.1.1 Microalgae: Answer for Ever Looming Environmental Crisis -- 11.2 Microalgal Bioprocessing: Upstream to Downstream Processing -- 11.2.1 Upstream Processing -- 11.2.2 Downstream Processing -- 11.2.3 Limitations of Conventional DSP Units -- 11.3 Recent Advancements in Microalgal DSP in Biometabolite Production. 11.3.1 Advances in Extraction Techniques -- 11.3.2 Developments in Downstream Purification Processes -- 11.3.3 Continuous Downstream Processing -- 11.4 Cost-Effective Downstream Processing of Algal Biomass: A Biorefinery Paradigm -- 11.5 Conclusion and Future Insights -- References -- 12 Pre-treatment Methods for Effective Resource Recovery from Microalgal Biomass -- 12.1 Introduction -- 12.2 Why Pre-Treatment is Important? -- 12.3 Pre-Treatments -- 12.3.1 Mechanical Pre-Treatment Method -- 12.3.2 Thermal Pre-Treatment Method -- 12.3.3 Physical Pre-Treatment Method -- 12.3.4 Chemical Pre-Treatment Method -- 12.3.5 Combined Pre-Treatment Method -- 12.3.6 Other Pre-Treatment Methods -- 12.4 Challenges -- 12.5 Conclusion -- References -- 13 Emerging Techniques for Extraction and Applications of Biomolecules from Microalgae -- 13.1 Introduction -- 13.2 Microalgae Cultivation System -- 13.2.1 Photoautotrophic Cultivation Mode -- 13.2.2 Heterotrophic Cultivation Mode -- 13.2.3 Mixotrophic Cultivation Mode -- 13.2.4 Photoheterotrophic Cultivation Mode -- 13.3 Valorisation of Algal Biomass for Production of High Value Compounds -- 13.3.1 Proteins -- 13.3.2 Polysaccharides -- 13.3.3 Bio-Oil -- 13.3.4 Vitamins -- 13.3.5 Pigments -- 13.3.6 Biosurfactants -- 13.4 Extraction Processes for Biomolecules from Microalgae -- 13.4.1 Physical Processes -- 13.4.2 Chemical Methods -- 13.4.3 Biological Processes -- 13.5 Purification Techniques for Biomolecules from Microalgae -- 13.6 Characterization Techniques for Biomolecules from Microalgae -- 13.7 Challenges and Future Prospect -- 13.8 Conclusion -- References -- 14 Impact of Algal Biomass for Pharmaceutical Application -- 14.1 Introduction -- 14.2 Bioactive Compounds that Make Algal Biomass Beneficial for Pharmaceutical Industry. 14.3 Pharmaceutically Applicable Bioactive Macromolecules Extracted from Microalgal Biomass. |
Record Nr. | UNINA-9910872196703321 |
Bharadvaja Navneeta | ||
Cham : , : Springer International Publishing AG, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|