top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advancements in Bio-Systems and Technologies for Wastewater Treatment
Advancements in Bio-Systems and Technologies for Wastewater Treatment
Autore Pandit Soumya
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (334 pages)
Altri autori (Persone) KumarLakhan
MathuriyaAbhilasha Singh
JadhavDipak Ashok
RaySubhasree
Collana Water Science and Technology Library
ISBN 3-031-58331-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1 Biological Wastewater Treatment -- 1.1 Introduction -- 1.2 Biological Wastewater Treatment -- 1.3 Techniques Used -- 1.3.1 Activated Sludge Process -- 1.3.2 Trickling Filters -- 1.3.3 Rotating Biological Contactors -- 1.3.4 Anaerobic Biological Wastewater Treatment -- 1.4 Monitoring and Control of Biological Treatment -- 1.5 Biological Treatment in Industrial Settings -- 1.6 Technological Advancements -- References -- 2 Nanoremediation to Fight Water Pollution -- 2.1 Introduction -- 2.2 Synthetic Approaches to Obtain Nanomaterials -- 2.3 Nanomaterials as Water Pollution Remediators -- 2.4 Conclusion -- 2.5 Future Perspectives -- References -- 3 Membrane Bioreactors -- 3.1 Introduction -- 3.2 Working of an MBR -- 3.3 Configurations of an MBR -- 3.4 Types of MBR -- 3.5 Membranes -- 3.5.1 Membrane Materials -- 3.5.2 Membrane Geometrics -- 3.6 Membrane Characteristics -- 3.6.1 Pore Size Distribution -- 3.6.2 Hydrophilicity -- 3.6.3 Electric Charge -- 3.6.4 Surface Roughness -- 3.7 Membrane Fouling -- 3.8 Challenges Associated with MBR -- 3.9 Applications -- 3.9.1 Wastewater Treatment -- 3.9.2 Water Recycling -- 3.9.3 Zero Liquid Discharge -- 3.10 Conclusion -- References -- 4 Recent Advances in the Application of Biosurfactants in Wastewater Treatment -- 4.1 Introduction -- 4.2 Structure and Genesis of Microbial Surface-Active Compounds -- 4.3 Microbial Biosurfactant Production -- 4.4 Microbial Fermentation of Biosurfactants -- 4.4.1 Biosurfactants for Waste Water Treatment -- 4.4.2 Biosurfactant-Facilitated Alginate-Biochar Beads Containing Bacteria that Break Down Polycyclic Aromatic Hydrocarbons (PAHs) -- 4.4.3 Biosurfactant Molecule Derived from Bacillus safensis YKS2 by Using Directed Metagenomic Approach -- 4.4.4 Carbon Nanotube (CNT) Treatment Integrated with Biosurfactants.
4.4.5 Magnetic Removal Techniques Integrated with Biosurfactant -- 4.4.6 Biosurfactant Modified Zeolites (BSMZs) -- 4.4.7 Enhanced Ultra-Filtration by Micellar (MEUF) -- 4.5 Future Perspective -- 4.6 Conclusion -- References -- 5 Microalgal Treatment of Wastewater and Production of Value-Added Products -- 5.1 Introduction -- 5.2 Microalgae and Their Marvel -- 5.3 Wastewater Treatment by Microalgae -- 5.3.1 Municipal Wastewater -- 5.3.2 Agricultural Wastewater -- 5.3.3 Industrial Wastewater -- 5.4 Mechanism of Nutrient Removal by Microalgal Treatment -- 5.4.1 Carbon -- 5.4.2 Nitrogen -- 5.4.3 Phosphorus -- 5.5 Production of Value-Added Products -- 5.5.1 Production of Biofertilizers -- 5.5.2 Production of Biochar -- 5.5.3 Bioenergy from Algae -- 5.5.4 Microalgal Hydrogen Production -- 5.5.5 Production of Secondary Metabolites from Algae -- 5.6 Biotic and Abiotic Factors Influencing the Treatment -- 5.6.1 Bacteria -- 5.6.2 Industrial Contaminants -- 5.6.3 pH -- 5.6.4 Temperature and Light -- 5.7 Conclusion -- References -- 6 Mitigating Water Pollution: The Synergy of Phytoremediation and Constructed Wetland Technology -- 6.1 Introduction -- 6.2 Phytoremediation Approaches in Wastewater Remediation and Ecosystem Restoration -- 6.3 Types and Significance of Constructed Wetlands in Phytoremediation of Wastewater -- 6.4 Optimizing Wastewater Treatment Efficiency: Constructed Wetland Mechanisms and Improvement Considerations -- 6.5 Significance of Aquatic Plants as a Nature- Based Solution in Constructed Wetlands -- 6.6 Application of Constructed Wetlands for Treatment of Different Wastewaters: -- 6.7 Role of Constructed Wetlands in Treating Municipal Water: -- 6.8 Role of Constructed Wetlands in Treating Textile Wastewater: -- 6.9 Role of Constructed Wetlands in Treating Landfills Leachate: -- 6.10 Conclusion -- References.
7 Environmental Sustainability Assessment of Wastewater Treatment Methods: An LCA Approach -- 7.1 Introduction -- 7.2 Methodology -- 7.2.1 Goal and Scope Definition -- 7.2.2 Life Cycle Inventory -- 7.2.3 Life Cycle Impact Assessment -- 7.3 Result and Discussion -- 7.3.1 Global Warming Potential (GWP) -- 7.3.2 Human Toxicity Potential (HTP) -- 7.3.3 Abiotic Depletion Potential (ADP) -- 7.3.4 Ecotoxicity Potential (EP) -- 7.3.5 Acidification Potential (AP) -- 7.3.6 Eutrophication Potential (EUP) -- 7.3.7 Ozone Depletion Potential (ODP) -- 7.3.8 Uncertainty -- 7.4 Conclusion -- References -- 8 From Linear Economy to Circular Bio-economy: A Paradigm Shift in Wastewater Management -- 8.1 Introduction -- 8.1.1 Linear Economy -- 8.1.2 What is Circular Economy? -- 8.1.3 Linear Economy Versus Circular Economy -- 8.1.4 What is Bio-economy? -- 8.1.5 Relation Between Circular Economy and Bio economy -- 8.1.6 Need of a Circular Bio Economy -- 8.2 Development of Bioeconomic Strategies -- 8.3 Sewage to Safe Water -- 8.4 Sustainability in Water Management -- 8.5 Wastewater Management Principles -- 8.6 Wastewater: Sources and Composition -- 8.7 Wastewater Treatment Techniques -- 8.8 Advancement in Wastewater Treatment for Environmental Sustainability -- 8.9 Microbes in Waste Management -- 8.10 Measurement of Other Harmful Chemicals: Mercurial Purifiers -- 8.11 Fuel from Wastewater: A Step Towards Circular Bio Economy -- 8.12 Algae and Wastewater -- 8.13 Conclusion -- References -- 9 Anaerobic Digestion and Electromethanogenesis -- 9.1 Introduction -- 9.2 Processes for Anaerobic Digestion -- 9.3 Hydrolysis -- 9.4 Acidogenesis -- 9.5 Acetogenesis -- 9.6 Methanogenesis -- 9.7 Percentage Composition of Methane from Anaerobic Digester -- 9.8 Process Parameters of Anaerobic Digester -- 9.9 Methods of Accelerating the AD.
9.10 Non-Biological Conductive Materials Used to Stimulate Electron Transfer -- 9.11 Combining MES with AD for Improving Microbial Interaction -- 9.12 Types of Anaerobic Digesters Used for Methane Production -- 9.13 The Operating Temperature -- 9.14 Variation in Feedstock -- 9.15 Based on Wet and Dry Solids -- 9.16 Batch Flow and Continuous Flow -- 9.16.1 Batch Digesters -- 9.16.2 Continuous Digesters -- 9.16.3 Stand-Alone Digesters -- 9.16.4 On-Farm Digester -- 9.16.5 Design of the Anaerobic Digester -- 9.17 Recent Advancement in Anaerobic Digester -- 9.18 Biofuel -- 9.19 Bio-electricity -- 9.20 Feedstock for Anaerobic Digester -- 9.21 Effect of Anaerobic Digestion on the Environment -- 9.22 Material Factors and Configuration -- 9.22.1 Anode Material -- 9.22.2 Cathode Material -- 9.22.3 Membrane -- 9.22.4 Cell Configuration -- 9.23 Single Chamber Configuration -- 9.24 Two Chamber Configuration -- 9.25 Microorganisms Involved in the Process of Electromethanogenesis -- 9.26 Operating Parameters -- 9.27 Applied Voltage and Set Potential -- 9.28 Temperature -- 9.29 Ph -- 9.30 Substrate -- 9.31 Current Density -- 9.32 Applications of Electromethanogenesis -- 9.33 For Upgrading of Biogas -- 9.34 Waste Treatment Coupled to Electromethanogenesis -- 9.35 Conclusion and Challenges Conclusion -- References -- 10 Removal of Environmental Pollutants from Industrial Wastewater Using Conventional, Advanced Biotechnological Wastewater Treatment Processes -- 10.1 Introduction -- 10.2 Toxic Effects of Wastewater on the Environment -- 10.2.1 Habitat and Water Contamination -- 10.2.2 Soil Degradation -- 10.2.3 Aquatic Life -- 10.2.4 Water Bodies -- 10.2.5 Squalor -- 10.3 Use of Nanotechnology in Environmental Remediation -- 10.4 Bioremediation -- 10.4.1 Biological Remediation is Mainly Classified into Two Types -- 10.4.2 Types of Bioremediation Methods.
10.4.3 Technologies Can Be Classified as In Situ or Ex-Situ -- 10.5 Ligninolytic Enzymes in Degradation and Decolorization of Pulp and Paper Industry Wastewater -- 10.6 Biological Treatment of Paper and Pulp Industry Effluent -- 10.6.1 Microbial Lignin Degradation Lignin -- 10.6.2 Bacterial Degradation Lignin -- 10.6.3 Brown-Rot Fungi Brown-Rot Fungi -- 10.6.4 White-Rot Fungi White-Rot Fungi -- 10.7 Different Categories of Wastewater Based on Various Components Dissolved in It -- 10.7.1 Characteristics of Wastewaters -- 10.8 A Proactive Approach to Conjugate Both Traditional as Well as Biotechnological Approaches in Order to Start Sorting and Treating Wastewater -- 10.8.1 Understanding Biotechnology -- 10.8.2 Use of Biotechnology in Sewage Treatment -- 10.9 Benefits of Biotechnology -- 10.10 Role of Microbiology and Molecular Biology on Wastewater Treatment -- 10.10.1 Fluorescent In Situ Hybridization (FISH) -- 10.10.2 Microarray -- 10.10.3 Quantitative PCR (qPCR) -- References -- 11 Bio-Degradation of Phenol and Phenolic Compounds -- 11.1 Introduction -- 11.1.1 Microorganisms Capable of Degrading Phenol and Phenolic Compounds -- 11.1.2 Aerobic Biodegradation of Phenol and Phenolic Compounds -- 11.1.3 Anaerobic Biodegradation of Phenol and Phenolic Compounds -- 11.1.4 Degradation of Phenol and Phenolic Compounds via Fungi -- 11.1.5 Degradation of Phenol and Phenolic Compounds via Algae -- 11.1.6 Factors Affecting Degradation of Phenol and Phenolic Compounds -- 11.1.7 The Effect of pH -- 11.1.8 The Effect of Temperature -- 11.1.9 Effect of Dissolved Oxygen Concentration -- 11.1.10 Effect of Additional Carbon Sources on Phenol Degradation -- 11.1.11 Degradation or Removal of Phenol from Wastewater -- 11.1.12 Reactors Used in Phenol Biodegradation -- 11.2 Challenges and Future Prospects -- 11.3 Conclusion -- References.
12 Concepts, Techniques, and Current Advances of the Membrane Biofilm Reactor (MBfR) for the Behavior of Industrial Wastewater.
Record Nr. UNINA-9910878053403321
Pandit Soumya  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities [[electronic resource] /] / edited by Maulin P. Shah, Navneeta Bharadvaja, Lakhan Kumar
Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities [[electronic resource] /] / edited by Maulin P. Shah, Navneeta Bharadvaja, Lakhan Kumar
Autore Shah Maulin P
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (501 pages)
Disciplina 551.48
Altri autori (Persone) BharadvajaNavneeta
KumarLakhan
Collana Environmental Science and Engineering
Soggetto topico Water
Hydrology
Biomaterials
Nanotechnology
Green chemistry
Sustainability
Environmental chemistry
Green Chemistry
Environmental Chemistry
ISBN 3-031-45956-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bionanotechnology: Concepts, historical developments, and applications -- Biogenic nanomaterials: Synthesis, characterization, and applications -- Biogenic synthesis of nanomaterials: Plant diversity -- Biogenic synthesis of nanomaterials: Microbial diversity- Algae, bacteria, fungi, and others -- Biogenic synthesis of nanomaterials: Bioactive compounds as reducing, and capping agents -- Role of bioactive compounds in synthesis of nanomaterials: insights -- Biogenic nanomaterials as antimicrobial agents -- Nanomaterials induced cell disruption: An insight into mechanism -- Nanomaterials in drug delivery -- Biogenic nanomaterials for degradation of organic and inorganic pollutants -- Biogenic nanomaterials as catalyst for photocatalytic dye degradation -- Biogenic nanomaterials as adsorbents for heavy metal remediation -- Biogenic nanomaterials for remediation of Polyaromatic Hydrocarbons -- Biogenic nanomaterials for remediation of pharmaceutical products -- Biogenic nanomaterials for remediation of biocides-insecticides, pesticides and others -- Metal nanoparticles and algal lipid synthesis: An insight -- Metal nanoparticles and microbial (algal) metabolism -- Nanomaterials to enhance algal lipid productivity: Recent advancements -- Biogenic nanomaterials as fuel additives -- Bionanotechnology: Opportunities and challenges.
Record Nr. UNINA-9910799243903321
Shah Maulin P  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Trends and Developments in Algal Biofuels and Biorefinery
Recent Trends and Developments in Algal Biofuels and Biorefinery
Autore Bharadvaja Navneeta
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (456 pages)
Disciplina 662.88
Altri autori (Persone) KumarLakhan
PanditSoumya
BanerjeeSrijoni
AnandRaksha
Collana Environmental Science and Engineering Series
ISBN 9783031523199
9783031523182
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Biorefinery for Microalgal Biomass at an Industrial Production Scale -- 1.1 Introduction -- 1.1.1 Microalgal Chemical Components -- 1.1.2 Cultivation of Microalgae -- 1.2 Microalgae-Derived Products and Their Applications -- 1.2.1 Lipids as Feedstock for Producing Biodiesel -- 1.2.2 Protein-Utilization in Feed and Food Industry -- 1.2.3 Pigments-For Cosmetic and Pharmaceutical Industry -- 1.2.4 Carbohydrates-For Producing Bioethanol -- 1.2.5 Additional Biofuels Derived from Microalgae -- 1.2.6 Other Microalgal Applications -- 1.3 Microalgal Extracellular Metabolites -- 1.3.1 Allelopathic Chemicals -- 1.3.2 Exopolysaccharides -- 1.3.3 Extracellular Phytohormones -- 1.3.4 Extracellular Proteins -- 1.3.5 Organic Acids -- 1.4 Microalgal Biorefinery -- 1.5 Future Prospective -- 1.6 Conclusion -- References -- 2 Algal Biorefinery to Produce High-Value Carotenoids and Bioenergy -- 2.1 Introduction -- 2.2 Food vs Feed Debate -- 2.2.1 Generations of Biofuels: A Potential Threat for Food Security -- 2.2.2 Potential Ways to Address the Food Security Concern -- 2.3 Challenges in Commercialization of Algal Biofuel -- 2.4 Natural vs Synthetic Carotenoids -- 2.5 Astaxanthin -- 2.5.1 Astaxanthin Production -- 2.5.2 Astaxanthin Extraction -- 2.5.3 Astaxanthin Based Bioenergy Producing Algal Biorefinery -- 2.6 Lutein -- 2.6.1 Lutein Production -- 2.6.2 Lutein Extraction -- 2.6.3 Lutein Based Bioenergy Producing Algal Biorefinery -- 2.7 Conclusions -- References -- 3 Low-Cost Microalgae Cultivation Methods -- 3.1 Introduction -- 3.2 Cultivation Methods -- 3.3 The Importance of Pretreatments to Reduce Costs of Subsequent Processes -- 3.4 Bioproducts Obtained from Microalgal Biomass -- 3.4.1 Biofuels -- 3.4.2 Pharmaceutical Products -- 3.4.3 Bioplastics -- 3.4.4 Bioherbicides and Biofertilizers.
3.5 Use of Microalgae for Environmental Purposes -- 3.6 Conclusion -- References -- 4 A Continuous System of Biofuel Production from Microalgal Biomass -- 4.1 Introduction -- 4.2 Cultivation System of Microalgal Biomass -- 4.2.1 Open Pond Cultivation System -- 4.2.2 Closed Cultivation System -- 4.2.3 Microalgae Cultivation Using Photobioreactor in Batch, Semi-continuous and Continuous Mode -- 4.3 Harvesting of Microalgal Biomass for Continuous Biofuel Production -- 4.3.1 Centrifugation -- 4.3.2 Filtration -- 4.3.3 Sedimentation -- 4.3.4 Flocculation -- 4.3.5 Flotation -- 4.4 Technique Required for Conversion of Microalgal Biomass into Biofuel -- 4.4.1 Physico-chemical Conversion -- 4.4.2 Biochemical Conversion -- 4.4.3 Thermochemical Conversion -- 4.5 Application -- 4.5.1 Microalgae Used as Human Food -- 4.5.2 Uses in Cosmetics -- 4.5.3 Uses in Biofertilizer -- 4.5.4 Uses in Pharmaceuticals -- 4.5.5 Uses in Aquaculture/Animal Feed -- 4.6 Future Prospect -- 4.7 Conclusion -- References -- 5 Development of Cost-Effective High Yielding Cell Disruption Techniques for Microalgae -- 5.1 Introduction -- 5.2 Types of Microalgal Cell Disruption -- 5.2.1 Mechanical Procedure -- 5.2.2 Non Mechanical Procedure -- 5.3 Conclusion and Future Perspectives -- References -- 6 Lipid Extraction Methods from Wet Microalgal Biomass -- 6.1 Introduction -- 6.2 Algae as a Source of Energy -- 6.3 Pre-Treatment of Algae -- 6.4 Lipid Extraction Techniques -- 6.4.1 Mechanical Approach -- 6.4.2 Solvent-Based Approach -- 6.4.3 Solvent-Free Approach -- 6.5 Conclusion -- 6.6 Future Directions -- References -- 7 Simultaneous Extraction, Separation and Characterization of Biomolecules from Microalgal Biomass -- 7.1 Introduction -- 7.2 Extraction of Biomolecules from Microalgal Biomass -- 7.2.1 Organic Solvent Extraction -- 7.2.2 Alternative Solvent Extraction.
7.2.3 Supercritical Fluids Extraction -- 7.2.4 Microwave-Assisted Extraction (MAE) -- 7.2.5 Ultrasound-Assisted Extraction -- 7.2.6 Pressurized Liquid Extraction (PLE) -- 7.2.7 Enzyme-Assisted Extraction -- 7.2.8 Electrical Pre-Treatment Extraction -- 7.3 Separation of Biomolecules from Microalgal Biomass -- 7.3.1 Electrophoresis -- 7.3.2 Membrane Separation Technique -- 7.3.3 Ultracentrifugation -- 7.3.4 Aqueous Two-Phase Method -- 7.3.5 Phase Partitioning -- 7.3.6 Ammonium Sulfate Precipitation -- 7.4 Characterization of Biomolecules from Microalgal Biomass -- 7.4.1 Supercritical Fluid Chromatography -- 7.4.2 Column Chromatography -- 7.4.3 Permeation Chromatography -- 7.4.4 Ion-Exchange Chromatography -- 7.4.5 Affinity Chromatography -- 7.4.6 Thin-Layer Chromatography -- 7.4.7 High-Performance Liquid Chromatography -- 7.4.8 Counter Current Chromatography -- 7.4.9 Gas Chromatography -- 7.5 Conclusion -- References -- 8 Lipid Extraction Methods from Wet Microalgal Biomass -- 8.1 Introduction -- 8.2 Lipid and Algal Biomass as a Source of Bioenergy -- 8.3 Total Lipid Extraction Methods -- 8.3.1 Folch Method -- 8.3.2 Bligh and Dyer Method -- 8.3.3 Extraction of All Classes of Lipids -- 8.3.4 Superior Solvent Extraction Methods -- 8.3.5 In Situ Lipid Hydrolysis and Supercritical in Situ Transesterification -- 8.4 Algal Oil Extraction-A Mechanical Approach -- 8.4.1 Bead Beating -- 8.4.2 Expeller Press -- 8.4.3 Microwave -- 8.4.4 Ultrasonic-Assisted Extraction -- 8.4.5 Algal Oil Extraction Using Electroporation -- 8.5 A Novel Initiative by an Industry to Extract Algal Lipids -- 8.5.1 Osmotic Pressure Method -- 8.5.2 Solvent-Free Extraction Methods for Algal Biomass -- 8.5.3 Enzyme-Assisted Extraction -- 8.5.4 Isotonic Extraction Method -- 8.6 Prospects and Conclusion -- References.
9 Simultaneous Extraction, Separation, and Characterization of Biomolecules from Microalgal Biomass -- 9.1 Background -- 9.2 Cell Disruption Methods -- 9.2.1 Mechanical and Physical Methods -- 9.2.2 Non-Mechanical Methods -- 9.3 Techniques for Destroying Microalgal Cells and Collecting Their Components -- 9.3.1 Organic Solvent Extraction of Biomolecules -- 9.3.2 Alternative Solvents Extraction -- 9.3.3 Supercritical Fluid Extraction -- 9.4 Methods of Analysis of Biomolecules from Microalgae -- 9.4.1 Supercritical Fluid Chromatography -- 9.4.2 Column Chromatography -- 9.4.3 Gel Filtration Chromatography -- 9.4.4 Ion-Exchange Chromatography -- 9.4.5 Affinity Chromatography -- 9.4.6 Thin-Layer Chromatography -- 9.4.7 High-Performance Liquid Chromatography -- 9.4.8 Counter Current Chromatography -- 9.4.9 Gas Chromatography -- 9.5 Separation and Purification Approaches -- 9.5.1 Electrophoresis -- 9.5.2 Membrane Separation Processes -- 9.5.3 Ultrafiltration -- 9.5.4 Electro-Membrane Filtration -- 9.5.5 Aqueous Two-Phase Systems -- 9.5.6 Three Phase Partitioning -- 9.5.7 Ammonium Sulfate Precipitation -- 9.6 Conclusion -- References -- 10 Economic Environment Friendly and Low-Cost Lipid Extraction Methods From Microalgae -- 10.1 Introduction -- 10.2 Microalgae as Source of Biofuel -- 10.3 Biochemical Composition of Microalgal Biomass -- 10.4 Types of Biofuels -- 10.5 Biodiesel from Microalgae -- References -- 11 Cost-Effective Downstream Processing of Algal Biomass for Industrial-Scale Biofuels Production -- 11.1 Introduction -- 11.1.1 Microalgae: Answer for Ever Looming Environmental Crisis -- 11.2 Microalgal Bioprocessing: Upstream to Downstream Processing -- 11.2.1 Upstream Processing -- 11.2.2 Downstream Processing -- 11.2.3 Limitations of Conventional DSP Units -- 11.3 Recent Advancements in Microalgal DSP in Biometabolite Production.
11.3.1 Advances in Extraction Techniques -- 11.3.2 Developments in Downstream Purification Processes -- 11.3.3 Continuous Downstream Processing -- 11.4 Cost-Effective Downstream Processing of Algal Biomass: A Biorefinery Paradigm -- 11.5 Conclusion and Future Insights -- References -- 12 Pre-treatment Methods for Effective Resource Recovery from Microalgal Biomass -- 12.1 Introduction -- 12.2 Why Pre-Treatment is Important? -- 12.3 Pre-Treatments -- 12.3.1 Mechanical Pre-Treatment Method -- 12.3.2 Thermal Pre-Treatment Method -- 12.3.3 Physical Pre-Treatment Method -- 12.3.4 Chemical Pre-Treatment Method -- 12.3.5 Combined Pre-Treatment Method -- 12.3.6 Other Pre-Treatment Methods -- 12.4 Challenges -- 12.5 Conclusion -- References -- 13 Emerging Techniques for Extraction and Applications of Biomolecules from Microalgae -- 13.1 Introduction -- 13.2 Microalgae Cultivation System -- 13.2.1 Photoautotrophic Cultivation Mode -- 13.2.2 Heterotrophic Cultivation Mode -- 13.2.3 Mixotrophic Cultivation Mode -- 13.2.4 Photoheterotrophic Cultivation Mode -- 13.3 Valorisation of Algal Biomass for Production of High Value Compounds -- 13.3.1 Proteins -- 13.3.2 Polysaccharides -- 13.3.3 Bio-Oil -- 13.3.4 Vitamins -- 13.3.5 Pigments -- 13.3.6 Biosurfactants -- 13.4 Extraction Processes for Biomolecules from Microalgae -- 13.4.1 Physical Processes -- 13.4.2 Chemical Methods -- 13.4.3 Biological Processes -- 13.5 Purification Techniques for Biomolecules from Microalgae -- 13.6 Characterization Techniques for Biomolecules from Microalgae -- 13.7 Challenges and Future Prospect -- 13.8 Conclusion -- References -- 14 Impact of Algal Biomass for Pharmaceutical Application -- 14.1 Introduction -- 14.2 Bioactive Compounds that Make Algal Biomass Beneficial for Pharmaceutical Industry.
14.3 Pharmaceutically Applicable Bioactive Macromolecules Extracted from Microalgal Biomass.
Record Nr. UNINA-9910872196703321
Bharadvaja Navneeta  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui