Advanced Materials and Manufacturing Techniques for Biomedical Applications
| Advanced Materials and Manufacturing Techniques for Biomedical Applications |
| Autore | Prasad Arbind |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (458 pages) |
| Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
| ISBN |
1-394-16696-6
1-394-16698-2 1-394-16697-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
| Record Nr. | UNINA-9910830708403321 |
Prasad Arbind
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Materials and Manufacturing Techniques for Biomedical Applications
| Advanced Materials and Manufacturing Techniques for Biomedical Applications |
| Autore | Prasad Arbind |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (458 pages) |
| Disciplina | 610.28 |
| Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
| Soggetto topico |
Biomedical materials
Tissue engineering |
| ISBN |
9781394166961
1394166966 9781394166985 1394166982 9781394166978 1394166974 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
| Record Nr. | UNINA-9911019889203321 |
Prasad Arbind
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau
| Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | New Delhi : , : Springer India : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (432 pages) : illustrations, tables |
| Disciplina | 333.794 |
| Soggetto topico |
Renewable energy resources
Climatic changes Agriculture Nature Ecology Educational technology Economics - Sociological aspects Renewable and Green Energy Climate Change Popular Science in Nature and Environment Educational Technology Organizational Studies, Economic Sociology |
| ISBN | 81-322-3763-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Global warming, climate change and greenhouse-gas mitigation -- Chapter 3. Historical development of biofuels -- Chapter 4. Perspective of biofuel production from different sources -- Chapter 5. Potential biomass for biofuels from wastelands -- Chapter 6. Predicting high and stable biomass production by calorirespirometry: a novel approach -- Chapter 7. Appropriate rural technologies: 1. agricultural waste to charcoal 2. strategies for biogas production from organic garbage -- Chapter 8. Biofuel production: Lignocellulosic feedstock improvement for biofuel production through molecular breeding and biotechnology -- Chapter 9. A review on first- and second-generation biofuel production -- Chapter 10. Critical evaluation of biodiesel production initiatives in India -- Chapter 11. Biofuel sector in Malaysia: challenges and future prospects -- Chapter 12. Assessment of non-plantation biomass resources potential for energy in India -- Chapter 13. Agrotechnology, production and demonstration of high quality planting material in three tier system for biofuels in semi-arid and arid conditions -- Chapter 14. Alternative biomass from saline and semi-arid and arid conditions as a source of biofuels: 1. Salicornia in Gujrat -- Chapter 15. Alternative Biomass from saline and semi-arid and arid conditions as a source of biofuels: 2. Calotropis species in Rajasthan -- Chapter 16. Potential of lignocellulosic materials for production of ethanol -- Chapter 17. Agro industrial lignocellulosic waste: an alternative to unravel the future bioenergy -- Chapter 18. Third-generation biofuel: algal biofuels as a sustainable energy source -- Chapter 19. Recent progress in the genetic engineering of biofuel crops -- Chapter 20. Bioresources and technologies that accelerate biomass research -- Chapter 21. Biotechnological research in Cryptomeria japonica -- Chapter 22. Cinnamyl alcohol dehydrogenase deficiency causes brown midrib phenotype in rice -- Chapter 23. The distribution, evolution and transposition of the mariner-like elements in bamboo -- Chapter 24. Novel molecular tools for metabolic engineering to improve microalgae-based biofuel production -- Chapter 25. Synthetic and semi-synthetic metabolic pathways for fourth-generation biofuel production: Future projections. |
| Record Nr. | UNINA-9910299596903321 |
| New Delhi : , : Springer India : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cutting Edge Technologies for Developing Future Crop Plants / / edited by Anita Mann, Naresh Kumar, Ashwani Kumar, Priyanka Chandra, Satish Kumar Sanwal, Parvender Sheoran
| Cutting Edge Technologies for Developing Future Crop Plants / / edited by Anita Mann, Naresh Kumar, Ashwani Kumar, Priyanka Chandra, Satish Kumar Sanwal, Parvender Sheoran |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (XXVII, 455 p. 39 illus., 37 illus. in color.) |
| Disciplina |
630
664.024 |
| Soggetto topico |
Agricultural biotechnology
Agricultural genome mapping Soil science Agricultural Biotechnology Agricultural Genetics Soil Science |
| ISBN | 981-9625-08-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Farmer’s Perspective on Climate Change and Agricultural Production -- 2. Greenhouse gas emission: problems, global reality and future perspectives -- 3. Improving soil properties through various soil amendments under changing climate scenario -- 4. Paradigm shift from traditional to innovative extension approaches in changing agricultural scenario for better crop productivity -- 5. Impact of Agri-based technological interventions for managing poor soils and policy insights -- 6. Advanced strategies for crop improvement against abiotic stresses: An integrated view from breeding to genomics -- 7. Breeding strategies for improved multi-stress resilient crops -- 8. Speed Breeding: A budding technique to improve crop plants for multi-stress tolerance -- 9. Epigenetics regulation of abiotic stress in crop plants -- 10. Gene editing prospective for engineering climate smart plants -- 11. Next-gen strategies in host plant resistance to insects: breakthroughs and future horizons -- 12. Underlying survival mechanisms in model trees for enhanced abiotic stress tolerance -- 13. Homeostasis of plant metabolites in mitigating abiotic stress challenges -- 14. Integrating Multi-Omics Strategies to Enhance Crop Resilience in a Changing Climate -- 15. Advancing Sustainable Agriculture Through Plant-Microbial Interactions Amid Climate Change -- 16. CRISPR/Cas-based fungal genome engineering for secondary metabolite production: progress and challenges -- 17. Microbial Contributions to Crop Adaptation: Innovation for Climate-Resilient Agriculture -- 18. Effect of Climate Change on Seed Quality Development -- 19. Recent advances towards abiotic stresses tolerance and improvement in barnyard millet: a climate-resilient crop for food security -- 20. Challenges and opportunities of cultivating sandalwood (Santalum album) under abiotic stress conditions -- 21. Potential of halophytes in greening the barren land and making use of waste lands. |
| Record Nr. | UNINA-9910991171903321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy Management in Renewable Sources Integrated System : Proceedings of ICGEST 2023, Volume 1 / / edited by Ashwani Kumar, S. N. Singh, Pradeep Kumar
| Energy Management in Renewable Sources Integrated System : Proceedings of ICGEST 2023, Volume 1 / / edited by Ashwani Kumar, S. N. Singh, Pradeep Kumar |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (XVIII, 416 p. 231 illus., 213 illus. in color.) |
| Disciplina | 621.042 |
| Collana | Lecture Notes in Networks and Systems |
| Soggetto topico |
Renewable energy sources
Energy harvesting Energy policy Renewable Energy Energy Harvesting Energy Policy, Economics and Management |
| ISBN | 981-9610-12-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910988294503321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of Artificial Intelligence
| Handbook of Artificial Intelligence |
| Autore | Shanthi Dumpala |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Sharjah : , : Bentham Science Publishers, , 2023 |
| Descrizione fisica | 1 online resource (297 pages) |
| Altri autori (Persone) |
MadhuravaniB
KumarAshwani |
| Soggetto topico |
Artificial intelligence
Machine learning |
| ISBN |
9789815124514
981512451X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Machine Learning Techniques and their Applications: Survey -- P. Karthik1,*, K. Chandra Sekhar1 and D. Latha2 -- 1. INTRODUCTION -- 1.1. History of AI & -- ML -- 1.2. Applications of ML -- 1.2.1. Speech Recognition [19] -- 1.2.2. Predictive Analytics [19] -- 1.2.3. Product Recommendation [20] -- 1.2.4. Image Recognition [19] -- 1.2.5. Video Surveillance [20] -- 1.2.6. Extraction [19] -- 1.2.7. Traffic Alerts [20] -- 1.2.8. Medical Diagnosis [19] -- 1.2.9. Sentiment Analysis [20] -- 1.2.10. Google Translate [20] -- 1.2.11. Virtual Personal Assistants [20] -- 1.3. Difference Between Traditional Programming Concepts and ML Concepts [23] -- 1.3.1. Why Must We Learn ML? -- 1.3.2. Difference Between AI & -- ML [23] -- 1.4. Steps to Learn ML -- 1.4.1. Data Gathering [24] -- 1.4.2. Data Preparation [24] -- 1.4.3. Selecting the Model [24] -- 1.4.4. Training the Model [24] -- 1.4.5. Evaluate the Model [24] -- 1.4.6. Parameter Tuning [24] -- 1.4.7. Make Patterns [24] -- 1.5. Types of ML -- 1.6. Basic ML Methods -- 1.7. ML in Agriculture -- 1.8. ML in Sentiment Analysis -- 1.9. ML in Stock Prediction -- 1.10. ML in Disease Prediction -- 1.11. ML in Data Mining -- 1.12. ML in COVID-19 -- 1.13. ML in Cyber Security -- 1.14. ML in Cloud Computing -- 1.15. ML in Big Data Analytics (BDA) -- 1.16. ML in Recommendation System -- 1.17. Future Experiments on Real Time Problems Using ML -- CONCLUSION -- REFERENCES -- Applications of Machine Learning -- Prediction using Machine Learning -- Adluri Vijaya Lakshmi1,*, Sowmya Gudipati Sri2, Ponnuru Sowjanya2 and K. Vedavathi3 -- 1. INTRODUCTION TO MACHINE LEARNING -- 2. CLASSIFICATION OF MACHINE-LEARNING -- 2.1. Supervised Learning -- 2.2. Unsupervised Learning -- 2.3. Reinforcement Learning.
3. BREAST CANCER PREDICTION USING ML TECHNIQUES -- 3.1. Introduction -- 3.2. Related Works -- 4. HEART DISEASE PREDICTION USING MACHINE LEARNING TECHNIQUES -- 4.1. Introduction -- 4.2. Existing System -- 5. PREDICTING IPL RESULTS USING ML TECHNIQUES -- 5.1. Introduction -- 5.2. Related Work -- 6. PREDICTION OF SOFTWARE BUG UTILISING ML TECHNIQUE -- 6.1. Introduction -- 6.2. Related Work -- 7. PREDICTION OF RAINFALL USING MACHINE LEARNING TECHNIQUES -- 7.1. Introduction -- 7.2. Related Work -- 8. WEATHER PREDICTION USING MACHINE LEARNING TECHNIQUES -- 8.1. Machine Learning -- 8.2. Use of Algorithms -- CONCLUSION -- REFERENCES -- Machine Learning Algorithms for Health Care Data Analytics Handling Imbalanced Datasets -- T. Sajana1,* and K.V.S.N. Rama Rao2 -- 1. INTRODUCTION -- 2. MACHINE LEARNING- AN INTELLIGENT AUTOMATED SYSTEM -- 3. TYPES OF DATASETS-BY NATURE -- 3.1. Balanced Datasets -- 3.2. Imbalanced Datasets -- 4. ISSUES WITH IMBALANCED DATASETS -- 4.1. Class Imbalance Problem -- 4.2. Classifiers Learning On Imbalanced Datasets -- 4.3. Taxonomy of Various Techniques on Imbalanced Datasets -- 5. APPLICATION OF CONVENTIONAL DATA MINING & -- MACHINE LEARNING TECHNIQUES FOR HANDLING CLASS IMBALANCE PROBLEM -- 6. APPLICATION OF DATA LEVEL METHODS FOR HANDLING CLASS IMBALANCE PROBLEM -- 6.1. Undersampling -- 6.2. Oversampling -- 7. APPLICATION OF ALGORITHMIC LEVEL METHODS FOR HANDLING CLASS IMBALANCE PROBLEM -- 7.1. Cost-Sensitive Classifiers -- 7.2. Ensemble Techniques -- CONCLUSION -- REFERENCES -- AI for Crop Improvement -- S.V. Vasantha1,* -- 1. INTRODUCTION -- 2. GENOMICS FOR AGRICULTURE -- 3. AI FOR AGRICULTURE -- 4. AI TECHNIQUES FOR CROP IMPROVEMENT -- 5. AI-BASED CROP IMPROVEMENT MODEL (AI-CIM) -- 5.1. Automation of Modern Crop Improvement Process -- 5.2. AI Model for Enhanced Crop Breeding -- 5.2.1. Automated Selective Breeding System. 5.2.2. Automated Plant Health Monitoring System -- CONCLUSION -- REFERENCES -- Real-Time Object Detection and Localization for Autonomous Driving -- Swathi Gowroju1,*, V. Swathi1, J. Narasimha Murthy1 and D. Sai Kamesh1 -- 1. INTRODUCTION -- 2. LITERATURE SURVEY -- 3. PROPOSED METHOD -- 3.1. Proposed Architecture -- 4. IMPLEMENTATION -- 4.1. Bounding Boxes -- 4.2. Anchor Boxes -- 4.3. Non-max Suppression -- 5. RELU ACTIVATION -- 6. LOSS FUNCTION -- 7. TRAINING PARAMETERS -- 8. RESULTS -- CONCLUSION -- ACKNOWLEDGEMENT -- REFERENCES -- Machine Learning Techniques in Image Segmentation -- Narmada Kari1,*, Sanjay Kumar Singh1 and Dumpala Shanthi2 -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. METHODOLOGY -- 3.1. Collection of Data -- 3.2. Pre-processing of Images -- 3.3. Training Options -- 3.4. Define Label IDs -- 3.5. Feature Extraction -- 3.6. Feature Reduction/Selection -- 3.7. Feature Classification -- 3.8. Machine Learning -- 3.8.1. Supervised Learning -- 3.8.2. Unsupervised Learning -- 3.8.3. Reinforcement Learning -- 3.8.4. Deep Learning -- 3.8.5. Deep Reinforcement Learning -- CONCLUSION -- REFERENCES -- Optimal Page Ranking Technique for Webpage Personalization Using Semantic Classifier -- P. Pranitha1,*, A. Manjula1, G. Narsimha2 and K. Vaishali3 -- 1. INTRODUCTION -- 2. LITERATURE SURVEY -- 2.1. Challenges -- 2.2. Motivation of Research -- 2.3. Proposed Methodology -- 2.4. Generation of Web Pages -- 3. PRE-PROCESSING -- 3.1. Feature Extraction and Web Page Ranking -- 3.2. ENN-based Semantic Features -- 4. RE-RANKING OF WEB PAGES -- 4.1. Grass Hopper Optimization (GHO) -- 4.1.1. Social Interaction Calculation -- 4.1.2. Solution Updating -- 4.2. Artificial Bee Colony Algorithm (ABC) -- 4.2.1. Employed Bee Operation -- 4.2.2. Probability Calculation -- 4.2.3. Onlooker Bee Operation -- 4.3. Oppositional Grass Bee Optimization (OGBEE). 4.3.1. Opposition Behavior Learning (OBL) -- 4.3.2. Fitness Calculation -- 4.3.3. Updating using Grasshopper Optimization -- 4.3.4. Scout Bee Operation -- 4.3.5. Termination Criteria -- 5. RESULTS AND DISCUSSION -- 5.1. Evaluation Metrics -- 5.1.1. Precision -- 5.1.2. Recall -- 5.1.3. F-measure -- CONCLUSION -- REFERENCES -- Text Analytics -- Divanu Sameera1,*, Niraj Sharma2 and R.V. Ramana Chary3 -- 1. INTRODUCTION -- 1.1. Text Analytics Basics -- 1.2. Text Analytics Examples -- 2. HOW TO GET STARTED WITH TEXT ANALYTICS -- 2.1. Analyze Your Data -- 2.2. Use BI Tools to Understand Your Data -- 2.3. Final Words -- 3. EXAMPLES AND METHODS FOR TEXT ANALYTICS -- 3.1. Text Analytics Approach 1: Word Spotting -- 3.1.1. The Simplicity of the Word-spotting Approach is What Makes it so Appealing [28] -- 3.1.2. When Word Spotting is Acceptable? -- 3.2. Text Analytics Approach 2. Manual Rules -- 3.2.1. Multiple-word Meanings Make it Hard to Create Rules -- 3.2.2. Mentioned Word! = Core Topic -- 3.2.3. Rules -- 3.2.4. Taxonomies Don't Exist for Software Products and Many Other Businesses -- 3.2.5. Not Everyone can Maintain Rules -- 3.3. Text Analytics Approach 3. Text Categorization -- 3.3.1. What is Text Categorization, and How Does it Work? -- 3.3.2. You Won't Notice Emerging Themes -- 3.3.3. Lack of Transparency -- 3.3.4. Preparing and Managing Training Data is Hard -- 3.3.5. Re-training for Each New Dataset -- 3.4. Approach 4: Topic-Modelling -- 3.4.1. What's Incredible Regarding Topic-modelling -- 3.5. Approach 5. Thematic Analysis -- 3.5.1. Thematic Analysis: How it Works -- 3.5.2. Advantages and Disadvantages of Thematic Analysis -- 3.5.3. Human in The Loop -- 4. CASE STUDY -- CONCLUSION -- REFERENCES -- Human Activity Recognition System Using Smartphone -- R. Usha Rani1 and M. Sunitha1,* -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. MAIN TECHNIQUES. 4. SMARTPHONE HAR COMMANDS -- 4.1. HAR Section 1: Data Cleaning Through Preprocessing -- 4.1.1. Data Filtering -- 4.1.2. Data Segmentation -- 4.1.3. Reduction -- 4.1.4. Selection of Feature -- 4.2. HAR Section II: Procedure to Perform Classification -- CONCLUSION -- REFERENCES -- Smart Water Bottle with Smart Technology -- Dumpala Shanthi1,* -- 1. INTRODUCTION -- 2. EMBEDDED SYSTEM -- 3. ARDUINO NANO -- 4. PIN DIAGRAM -- 4.1. Serial Communication -- 4.2. Water Level Sensor -- 5. LDR: WORKING -- 6. APPLICATIONS -- 6.1. Light Dependent Resistor (LDR) Measurement -- 6.2. Message Management General Description -- 6.3. RA Mode -- 6.4. Tape Mode -- 6.5. Automatic Gain Control (AGC) -- 6.6. Sampling Use -- 7. MODULE -- 7.1. Types -- 7.2. Security Concerns -- 7.3. Other Devices' Interference -- 7.4. Streaming Media of Poor Quality -- 7.5. Specifications -- CONCLUSION -- REFERENCES -- Real World Applications of Machine Learning in Health Care -- Kari Narmada1,*, Sanjay Kumar Singh1 and Dumpala Shanthi2 -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. TYPES OF MACHINE LEARNING -- 3.1. Supervised Learning -- 3.2. Unsupervised Learning -- 3.3. Reinforcement Learning -- 3.4. Recommender Systems -- 4. MACHINE LEARNING APPLICATIONS IN HEALTH CARE -- 4.1. The Most Challenges For AI In Healthcare -- 4.2. Possible Risks to Generalizability in Clinical Research and Machine Learning In Health Care -- CONCLUSION -- REFERENCES -- Investigating and Identifying Fraudulent Behaviors of Medical Claims Data Using Machine Learning Algorithms -- Jyothi P. Naga1,*, K.V.S.N. Rama Rao2, L. Rajya3 and S. Suresh4 -- 1. INTRODUCTION -- 2. ROLE OF MACHINE LEARNING ALGORITHMS -- 3. VARIOUS KINDS OF HEALTHCARE DATA -- 4. EXISTED WORK OF DIFFERENT MODELS ON FRAUD DETECTION -- 4.1. General Model -- 4.2. Statistical Model -- 4.3. Supervised Models. 5. MECHANISM FOR INVESTIGATING AND IDENTIFYING THE FRAUDULENT BEHAVIORS OF MEDICAL CLAIMS DATA. |
| Record Nr. | UNINA-9910915786003321 |
Shanthi Dumpala
|
||
| Sharjah : , : Bentham Science Publishers, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanotechnology : Agriculture, Environment and Health / / edited by Acharya Balkrishna, Naveen Thakur, Vedpriya Arya, Ashwani Kumar
| Nanotechnology : Agriculture, Environment and Health / / edited by Acharya Balkrishna, Naveen Thakur, Vedpriya Arya, Ashwani Kumar |
| Autore | Balkrishna Acharya |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (330 pages) |
| Disciplina |
530.41
620.115 |
| Altri autori (Persone) |
ThakurNaveen
AryaVedpriya KumarAshwani |
| Soggetto topico |
Nanoscience
Nanochemistry Biotechnology Public health Agricultural biotechnology Pollution Nanophysics Public Health Agricultural Biotechnology |
| ISBN |
9789819768141
9819768144 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Nanotechnology Intervention for Sustainable Agriculture: Challenges and Possibilities -- Dynamic Applied Interactions amid Nanoparticles, Beneficial Soil Microorganisms, and Phytopathogens -- Influence of Nanoparticles in Orchestrating Plant Growth and Development -- Nano-biofertilizers and Nano-biopesticides: Impact of Future Agrochemicals -- Advancements in ZnO Nanomaterials for Enhancing Agricultural Systems -- Bionanoaugmentation: A novel approach for environment protection -- Nanomaterial-based photochemical degradation of environmental pollutants -- Nanotoxicology: A Threat to The Environment and Human Health -- Nanoparticles-mediated diagnosis of common human diseases: With special reference to gold nanoparticles -- Nanoparticles as drug delivery systems: Advances and challenges -- Recent advancements in nanobiology in the treatment of human diseases -- Futuristic role of green nanotechnology for sustainable agriculture, environment, and public health. |
| Record Nr. | UNINA-9910886084403321 |
Balkrishna Acharya
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nutraceuticals from Fruit and Vegetable Waste
| Nutraceuticals from Fruit and Vegetable Waste |
| Autore | Tomer Vidisha |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (562 pages) |
| Disciplina | 664.08 |
| Altri autori (Persone) |
ChhikaraNavnidhi
KumarAshwani PanghalAnil |
| Collana | Bioprocessing in Food Science Series |
| Soggetto topico |
Agricultural wastes
Sustainable development |
| ISBN |
9781119803980
1119803985 9781119803973 1119803977 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Valorisation of Fruit and Vegetable Waste -- 1.1 Introduction -- 1.2 Valorisation of By-Products from Fruit and Vegetable Processing Industry -- 1.2.1 Oil -- 1.2.2 Essential Oils -- 1.2.3 Pectin -- 1.2.4 Pigments -- 1.2.5 Biofuels -- 1.2.6 Organic Acids -- 1.2.7 Enzymes -- 1.2.8 Bioactive Compounds -- 1.2.9 Others -- 1.3 Conclusion -- References -- Chapter 2 Nutraceuticals from Guava Waste -- Abbrevations -- 2.1 Introduction -- 2.2 Guava Waste Types and Composition -- 2.2.1 Guava Leaves -- 2.2.2 Guava Seeds -- 2.2.3 Guava Pulp -- 2.2.4 Guava Pomace -- 2.2.5 Other Waste -- 2.3 Bioactive Potential of Guava Waste -- 2.3.1 Antioxidant Activity -- 2.3.2 Anti-Inflammatory Activity -- 2.3.3 Antidiabetic Activity -- 2.3.4 Antidiarrheal Activity -- 2.3.5 Antimicrobial Activity -- 2.3.6 Anticancer Activity -- 2.3.7 Acne Lesions -- 2.3.8 Antitussive Effects -- 2.3.9 Hepatoprotective Effects -- 2.3.10 Antigenotoxic and Antimutagenic Effects -- 2.3.11 Anti-Allergic Effects -- 2.3.12 Antinociceptive Effects -- 2.3.13 Wound Healing -- 2.4 Application of Guava Waste -- 2.4.1 Health and Cosmetics -- 2.4.2 Food Industry -- 2.4.3 Bio-Remediation -- 2.4.4 Biotechnological Aspects -- 2.4.5 Animal Feed -- 2.4.6 Fermentation -- 2.4.7 Water Treatment Agent -- 2.4.8 Production of Enzymes -- 2.4.9 Functional Ingredient in Developing Various Food Products -- 2.4.10 Other Applications -- 2.5 Conclusion -- References -- Chapter 3 Nutraceuticals from Emblica officinalis Waste -- 3.1 Introduction -- 3.2 Composition of Amla Waste -- 3.2.1 Pomace -- 3.2.1.1 Nutritional Composition -- 3.2.1.2 Phytochemical Composition -- 3.2.1.3 Utilization -- 3.2.2 Amla Seed and Seed Coat -- 3.2.2.1 Nutritional Composition -- 3.2.2.2 Phytochemical Composition -- 3.3 Utilization of Amla Waste.
3.4 Pharmaceutical Potential of Amla Waste -- 3.5 Other Amla Waste -- 3.6 Conclusion -- References -- Chapter 4 Nutraceuticals from Apple Waste -- 4.1 Introduction -- 4.2 Nutritional Profile and Physicochemical Composition -- 4.2.1 Moisture -- 4.2.2 Carbohydrates -- 4.2.3 Polyphenols -- 4.2.4 Lipids -- 4.2.5 Proteins -- 4.2.6 Vitamins -- 4.2.7 Minerals -- 4.2.8 Enzymes -- 4.2.9 Others -- 4.3 Bio-Actives and Functional Ingredients from Apple Pomace -- 4.3.1 Dietary Fibres -- 4.3.2 Pectin -- 4.3.3 Xyloglucan -- 4.3.4 Microcrystalline Cellulose -- 4.3.5 Polyphenols -- 4.3.6 Triterpenoids -- 4.3.7 Organic Acids -- 4.3.8 Minerals -- 4.3.9 Vitamins -- 4.3.10 Natural Pigments -- 4.4 Extraction of Bioactives from Apple Pomace -- 4.4.1 Maceration -- 4.4.2 Microwave-Assisted Extraction (MAE) -- 4.4.3 Ultrasound-Assisted Extraction (UAE) -- 4.4.4 Supercritical Fluid Extraction (SFE) -- 4.5 Use of Apple Pomace for Various Applications -- 4.5.1 Valuable Ingredient for Food Products -- 4.5.1.1 Bakery Products -- 4.5.1.2 Noodles -- 4.5.1.3 Fat and Sugar Replacements -- 4.5.2 Bioplastic Films -- 4.5.3 Production of Acids -- 4.5.4 Natural Colours -- 4.6 Future Prospects and Conclusion -- References -- Chapter 5 Avocado -- 5.1 Introduction -- 5.2 Nutritional Composition of Fruit Waste -- 5.2.1 Fruit -- 5.2.2 Peel -- 5.2.3 Seed -- 5.2.4 Pulp -- 5.3 Phytochemical Composition of Avocado Waste -- 5.3.1 Peel -- 5.3.2 Seed -- 5.3.3 Pulp -- 5.4 Pharmaceutical Potential of Fruit Waste -- 5.4.1 Peel -- 5.4.1.1 Anti-Oxidant Activity -- 5.4.1.2 Anti-Inflammatory Activity -- 5.4.1.3 Antimicrobial Activity -- 5.4.1.4 Anticancer Activity -- 5.4.1.5 Effect on Colonic Homeostasis -- 5.4.1.6 Radioprotective Effect -- 5.4.1.7 Antidiabetic Activity -- 5.4.1.8 Wound-Healing Activity -- 5.4.1.9 Anti-Aging Activity -- 5.4.1.10 Hypolipidemic Activity -- 5.4.1.11 Neuroprotective Activity. 5.4.2 Seed -- 5.4.2.1 Antimicrobial Activity -- 5.4.2.2 Cytotoxic Activity -- 5.4.2.3 Hypo-Cholesterolemic Activity -- 5.4.2.4 Antidiabetic Activity -- 5.4.2.5 Antidiarrhoeal Activity -- 5.4.2.6 Anti-Inflammatory Activity -- 5.4.2.7 Antifungal Activity -- 5.4.2.8 Anti-Oxidant Activity -- 5.4.2.9 Anti-Ototoxicity Activity -- 5.4.2.10 Neuroprotective Activity -- 5.4.2.11 Anti-Proliferative Activity -- 5.4.2.12 Wound-Healing Activity -- 5.4.3 Pulp -- 5.4.3.1 Antimicrobial Activity -- 5.4.3.2 Anticancer Activity -- 5.4.3.3 Antidiabetic and Hepatoprotective Activity -- 5.4.3.4 Hypo-Cholesterolemic Activity -- 5.4.3.5 Anti-Thrombotic Activity -- 5.5 Other Methods of Utilization -- 5.5.1 Peel -- 5.5.2 Seed -- 5.5.3 Pulp -- 5.6 Conclusion -- References -- Websites -- Chapter 6 Banana Waste as a Nutraceuticals Product -- 6.1 Introduction -- 6.2 Chemical Composition -- 6.3 Medicinal Properties -- 6.3.1 Antioxidant Activity -- 6.3.2 Antimicrobial Activity -- 6.4 Utilization of Banana Waste -- 6.5 Development of By-Products from Banana Waste -- 6.5.1 Banana Pseudostem Flour (BPF) -- 6.5.2 Banana Peel Powder (BPP) -- 6.5.3 Banana Peel Extract -- 6.5.4 Whole Green Banana Flour (WGBF) -- 6.5.5 Green Banana Pseudostem Flour (GBPF) -- 6.5.6 Banana Leaf Extract -- 6.5.7 Banana Flower -- 6.6 Summary -- Abbreviations -- References -- Chapter 7 Burmese Grape -- 7.1 Introduction -- 7.2 Burmese Grape Fruit and Fruit Waste -- 7.3 Nutraceuticals and Functional Activities of Burmese Grape Waste -- 7.3.1 Seed -- 7.3.1.1 Source of Fatty Acids -- 7.3.1.2 Source of Polysaccharides -- 7.3.1.3 Phytochemicals and Functional Properties -- 7.3.2 Peel -- 7.3.2.1 Nutrients in Burmese Grape Peel -- 7.3.2.2 Source of Polysaccharides -- 7.3.2.3 Phytochemicals and Functional Properties -- 7.4 Burmese Grape Tree Parts -- 7.4.1 Leaves -- 7.4.1.1 Phytochemicals and Functional Properties. 7.4.2 Stem Bark -- 7.5 Conclusion -- List of Abbreviations -- References -- Chapter 8 Citrus -- 8.1 Introduction -- 8.2 Phytochemicals in Citrus Waste -- 8.3 Principal Non-Conventional Technologies to Extract High Biological Value Compounds from Citrus Waste -- 8.3.1 Ultrasound-Assisted Extraction (UAE) -- 8.3.2 Microwave-Assisted Extraction (MAE) -- 8.3.3 Supercritical Fluid Extraction -- 8.3.4 Pressurized Water Extraction (PWE) -- 8.3.5 Pulsed Electric Field -- 8.3.6 High Hydrostatic Pressures -- 8.3.7 Enzyme-Assisted Extraction (EAE) -- 8.4 Citrus Waste and Its Utilization -- 8.4.1 Citrus Waste and Biofuel Production -- 8.4.2 Citrus Waste and Food Preservation Against -- 8.4.3 Citrus Waste and Bioactive Compounds -- 8.4.4 Citrus Waste and Food, Pharma, and Other Applications -- 8.5 Conclusion -- References -- Chapter 9 Dates -- 9.1 Introduction -- 9.1.1 Dates and Their Origin -- 9.1.2 Stages of Growth of Dates -- 9.1.3 Structure of Dates -- 9.2 Date Seeds -- 9.2.1 Sensory Properties of Date Seeds -- 9.3 Integrating Dates with Food for Developing Value-Added Recipes -- 9.4 Nutritional Benefits -- 9.4.1 Carbohydrates -- 9.4.2 Protein -- 9.4.3 Fat -- 9.4.4 Fiber -- 9.4.5 Vitamins -- 9.4.6 Minerals -- 9.5 Antioxidants and Phytochemicals in Dates -- 9.5.1 Phenols -- 9.5.2 Tocopherols and Tocotrienols -- 9.5.3 Flavonoids -- 9.5.4 Carotenoids -- 9.6 Health Benefits -- 9.7 Conclusion -- References -- Chapter 10 Ginger (Zingiber officinale) -- 10.1 Introduction -- 10.2 Ginger Varieties and Its Features -- 10.3 Nutritional and Phytochemical Components of Ginger -- 10.4 Processing of Ginger -- 10.4.1 Effect of Various Processing on the Functional Properties of Ginger -- 10.5 By-Products Generated from Ginger Processing -- 10.6 Nutraceutical Potential and Utilization of Ginger By-Products -- 10.6.1 Ginger Leaves -- 10.6.2 Ginger Stalk/Stem. 10.6.3 Ginger Peel -- 10.6.4 Ginger Pomace and Precipitate -- 10.7 Future Prospects -- References -- Chapter 11 Jackfruit -- 11.1 Introduction -- 11.2 Types of Jackfruit Waste and By-Products -- 11.3 Nutraceuticals and Functional Activities of Jackfruit Waste and By-Products -- 11.3.1 Jackfruit Seed -- 11.3.1.1 Nutrients -- 11.3.1.2 Phytochemicals and Functional Activities -- 11.3.1.3 Organic Acids -- 11.3.2 Jackfruit Flake -- 11.3.2.1 Nutrients -- 11.3.2.2 Phytochemicals and Functional Properties -- 11.3.2.3 Pectin -- 11.3.2.4 Organic Acids -- 11.3.3 Axis of Jackfruit -- 11.3.3.1 Fatty Acids -- 11.3.3.2 Phytochemicals and Functions -- 11.3.3.3 Pectin -- 11.3.4 Jackfruit Peel -- 11.3.4.1 Proximate Compounds -- 11.3.4.2 Phytochemicals and Their Functional Activities -- 11.3.4.3 Pectin -- 11.4 Parts of Jackfruit Tree -- 11.4.1 Phytochemicals and Functional Properties -- 11.5 Conclusion -- List of Abbreviations -- References -- Chapter 12 Development of Nutraceuticals from the Waste of Loquat -- 12.1 Introduction -- 12.2 Importance of Waste Material of Fruits -- 12.3 The Worldwide Growth Pattern of Loquat -- 12.4 Physiology and Biochemistry of Loquat -- 12.5 Use of Loquat Tree and Its Parts -- 12.6 Nutraceutical Properties -- Conclusion -- References -- Chapter 13 Mango -- 13.1 Introduction -- 13.2 Mango Peel -- 13.3 Nutritional Composition -- 13.4 Phytochemical Composition -- 13.5 Utilization of Mango Peel -- 13.6 Mango Kernel -- 13.7 Nutritional Composition of Mango Kernel -- 13.8 Phytochemical Composition of Mango Kernel -- 13.9 Utilization of Mango Kernel -- 13.10 Other By-Products of Mango Waste -- References -- Chapter 14 Melon -- 14.1 Introduction -- 14.2 History, Origin and Domestication -- 14.3 Diversity and Botanical Groups of Melon -- 14.4 Consumer Preference for Melon -- 14.5 Nutritional Importance, Health Benefits and Culinary Uses of Melon. 14.6 Fruits and Vegetables Wastage. |
| Record Nr. | UNINA-9911019594903321 |
Tomer Vidisha
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||