top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Autore Prasad Arbind
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (458 pages)
Altri autori (Persone) KumarAshwani
GuptaManoj
PrasadArbind
ISBN 1-394-16696-6
1-394-16698-2
1-394-16697-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites.
6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application.
8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes.
10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization.
12.4 Conclusion and Future Directions.
Record Nr. UNINA-9910830708403321
Prasad Arbind  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Autore Prasad Arbind
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (458 pages)
Altri autori (Persone) KumarAshwani
GuptaManoj
PrasadArbind
ISBN 1-394-16696-6
1-394-16698-2
1-394-16697-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites.
6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application.
8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes.
10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization.
12.4 Conclusion and Future Directions.
Record Nr. UNINA-9910877669603321
Prasad Arbind  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Biotribology in Biomedical Systems
Applications of Biotribology in Biomedical Systems
Autore Kumar Abhishek
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (462 pages)
Altri autori (Persone) KumarAvinash
KumarAshwani
ISBN 9783031583278
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Aim and Scope -- Preface -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Chapter 1: Introduction to Biotribology: A Science of Surface Interaction -- 1.1 Introduction -- 1.2 Fundamentals and Principles of Biotribology -- 1.2.1 Friction -- 1.2.1.1 Friction Under Dry and Unlubricated Conditions -- 1.2.1.2 Static Friction and Kinetic Friction -- 1.2.1.3 Friction Under Lubricated Conditions -- 1.2.2 Key Principles of Biotribology -- 1.3 Forces in Nature -- 1.4 Principles of Adhesion and Cohesion -- 1.5 Contact Mechanics in Biotribology -- 1.6 Biological Aspects in Biotribology -- 1.7 Recent Advancements in Biotribology -- 1.7.1 Joint Tribology -- 1.7.2 Skin Tribology -- 1.7.3 Oral Tribology -- 1.7.4 Effect of Environment and Surface Finish -- 1.8 Summary -- References -- Chapter 2: Characterization of Hydrogel Properties in the Advancement of Bio-Tribology -- 2.1 Introduction -- 2.2 Tribological Properties of Articular Cartilage -- 2.3 Lubrication Mechanism of Articular Cartilage -- 2.3.1 Fluid Pressurization/Fluid-Film Lubrication -- 2.3.2 Boundary Lubrication -- 2.3.3 Hydrodynamic Lubrication -- 2.3.4 Squeeze-Film Lubrication -- 2.3.5 Synovial Fluid -- 2.3.6 Hydration Lubrication -- 2.4 Cartilage Mechanical and Surface Properties -- 2.4.1 The Friction of Articular Cartilage -- 2.4.2 Wear of Cartilage -- 2.5 Development of Hydrogels for Potential Replacement Materials -- 2.5.1 Important Properties of Articular Cartilage -- 2.5.2 Scaffolds -- 2.5.3 Synthetic Polymer -- 2.5.4 Polyacrylamide -- 2.5.5 PEG Hydrogel -- 2.5.6 PVA Hydrogel -- 2.5.7 Double Network Hydrogel -- 2.5.8 Triple Network Hydrogel -- 2.6 Tribological, Mechanical, and Structural Properties of Potential Cartilage Replacement Hydrogel -- 2.6.1 Polyacrylamide -- 2.6.2 PEG Hydrogel -- 2.6.3 PVA Hydrogel -- 2.6.4 Double Network Hydrogel.
2.6.5 Triple Network Hydrogel -- 2.7 Structural and Mechanical Property Relation with Surface Properties -- 2.7.1 Mechanical Properties -- 2.7.2 Structural Properties -- 2.8 Conclusion -- References -- Chapter 3: Recent Advancements in Developing Nanobiosensors for Treating Inflammatory Diseases of Human: A Comprehensive Overview -- 3.1 Introduction -- 3.2 Technological Outlines in Developing Nanobiosensors -- 3.2.1 Importance of Nanotechnology in Biosensing -- 3.2.2 Classification of Nanomaterials -- 3.2.3 Nanomaterials Used in Designing Biosensors -- 3.3 Methodologies Involved in Transduction -- 3.3.1 Label-Based Biosensors -- 3.3.2 Label-Free Biosensors -- 3.4 Different Nanobiosensing Techniques -- 3.4.1 Optical Sensing -- 3.4.2 Electrochemical/Electrical Sensing -- 3.4.3 Magnetic Sensing -- 3.4.4 Mass-Based Sensing -- 3.5 Tribology of Nanoparticles in the Context of Developing Nanobiosensors -- 3.6 Therapeutic Applications of Nanobiosensors -- 3.6.1 Therapeutic Application in Cancer -- 3.6.2 Neurodegenerative Diseases -- 3.6.3 Infectious Diseases -- 3.6.4 Metabolic Diseases -- 3.7 Advantages and Limitations of Nanobiosensors -- 3.7.1 Advantages of Nanobiosensors -- 3.7.2 Limitations of Nanobiosensors -- 3.8 Conclusion and Future Direction -- References -- Chapter 4: Biological Smart Materials: Materials for Cancer Treatment -- 4.1 Introduction -- 4.2 Surface Modification to Increase the Biocompatibility -- 4.2.1 Surface Functionalization -- 4.2.2 Bioconjugation -- 4.3 Synthesis Approach -- 4.3.1 Hydrothermal Method -- 4.3.2 Chemical Vapor Deposition (CVD) -- 4.3.3 Wet Chemical Method -- 4.4 Plasmonic Black Bodies (PBBs) -- 4.4.1 Gold NP (AuNPs)-Based PBB -- 4.4.2 Silver NPs (Ag NPs)-Based PBB -- 4.4.3 Platinum NPs (Pt NPs)-Based PBB -- 4.5 Biomimetic NP -- 4.6 Upconverting NP (UCNP) -- 4.6.1 Synthesis -- 4.7 Inorganic NP -- 4.7.1 Synthesis.
4.8 Photothermal Therapy (PTT) -- 4.8.1 PTT of PBB -- 4.8.1.1 Au NP for PTT -- 4.8.1.2 Ag NP for PTT -- 4.8.1.3 Pt NP for PTT -- 4.8.1.4 PTT of Biomimetic Materials -- 4.8.2 Photothermal Therapy of Upconverting Materials -- 4.8.2.1 PTT Activity of UCNPs UPLNs@mSiO2 -- 4.8.2.2 PTT Activity of UCNPs-PANPs -- 4.8.3 PTT of Inorganic Materials -- 4.9 Conclusion -- References -- Chapter 5: Tribological Measurements of Human Skin -- 5.1 Introduction -- 5.2 Human Skin -- 5.3 Friction of Skin -- 5.4 Lubrication and Skin -- 5.5 Skin Sensation and Perception -- 5.6 Impact of Clothing and Textile -- 5.7 Skin Tribology in Medical Applications -- 5.8 Impact of Skin Care Products -- 5.9 Impact of Skin Ageing -- 5.10 Future Scope -- 5.11 Conclusion -- References -- Chapter 6: Tribological Hurdles in Biomedical Manufacturing: A Comprehensive Examination -- 6.1 Introduction -- 6.1.1 Class 1 -- 6.1.2 Class 2 -- 6.1.3 Class 3 -- 6.2 Types of Biomedical Devices -- 6.3 Biotribology Involved with Biomedical Devices, Tribology-A Point of View and Perspective with Tribology in Biomedical Devices -- 6.4 Techniques Used for Manufacturing of Biomedical Device -- 6.4.1 Surface Modification Techniques -- 6.4.1.1 Surface Patterning -- 6.4.1.2 Direct-Write Patterning -- 6.4.1.3 Using a Stylus to Write -- 6.4.1.4 Using Quills, Pins, and Inkjets for Printing -- 6.4.1.5 Dip-Pen Nanotechnology -- 6.4.1.6 Nanografting and Nanoshaving -- 6.4.1.7 Composing Using Beams -- 6.4.1.8 Direct Write Photolithography (DWP) -- 6.4.1.9 Light-Beam Lithography Electron -- 6.4.1.10 Focused Ion Beam Lithography -- 6.4.2 Fabrication Techniques -- 6.4.2.1 Advanced Technique Developed by Biocompatible Film Technology -- 6.4.2.2 Non-invasive Technique-Vascular Wall Motion (VWM) Monitoring System -- 6.4.2.3 Cost-Effective Techniques for CKD Biodevice.
6.4.2.4 Non-invasive Glucose Monitoring Devices Technique -- 6.4.2.5 Biosensing Device Techniques Involving Volumetric Glucose Sensors, Optical or Spectroscopy Techniques for Other Detection Purposes -- 6.4.2.6 Cost-Effective Electrochemical Voltametric Sensors Techniques -- 6.4.2.7 Three-Dimensional (3D) Printing Techniques -- 6.4.2.8 UV-LED Stereolithography Printer Technique -- 6.4.2.9 4D Printing Techniques -- 6.4.2.10 Advanced Biomedical Techniques Involving Biorobots -- 6.5 Challenges with Applying Biotribology in Biomedical Devices -- 6.6 Future Scopes of Biotribology in the Field of Biomedical Devices, Targeting and Troubleshooting the Challenges -- 6.7 Summary and Conclusion -- References -- Chapter 7: Navigating the Landscape: Cutting-Edge Biomedical Manufacturing Techniques -- 7.1 Introduction -- 7.2 Size Limitations in Biomedical Manufacturing -- 7.2.1 Challenges of Manufacturing Small-Scale Biomedical Devices -- 7.2.2 Exploration of Potential Solutions and Emerging Technologies -- 7.3 Inconsistent Quality in Biomedical Manufacturing -- 7.3.1 Maintaining Consistent Quality in Biomedical Manufacturing -- 7.4 Scaling Issues in Biomedical Manufacturing -- 7.5 High Cost of Manufacturing Final Parts -- 7.6 Mechanical Biocompatibility Challenges -- 7.7 Poor Bio-Printing Resolution -- 7.8 High Cell Damage Rate in Biomedical Manufacturing -- 7.9 Limited Biomaterial Selection -- 7.10 Perspectives and Future Directions -- 7.11 Conclusion -- References -- Chapter 8: Animal Tribology -- 8.1 Introduction -- 8.2 Animal Tribology -- 8.2.1 Joint -- 8.2.2 Exoskeleton Contact with Surrounding -- 8.2.3 Integumentary Change -- 8.2.4 Other Body Parts with Its Surrounding -- 8.3 Application of Tribology in Biological System -- 8.3.1 Nanotribology -- 8.4 Green Tribology -- 8.4.1 Main Areas of Green Tribology -- 8.5 Conclusion -- References.
Chapter 9: Medical Devices Tribology -- 9.1 Introduction -- 9.2 Bio-Tribological Issues -- 9.3 Research Advances in the Bio-Tribology -- 9.3.1 Artificial Joints -- 9.3.2 Bone Fracture Fixation -- 9.3.3 Dental Restoration and Implants -- 9.3.4 Cardiovascular Devices -- 9.3.5 Minimal Invasive Surgical Devices -- 9.4 Current Challenges and Future Work -- References -- Chapter 10: Composites for Drug-Eluting Devices: Emerging Biomedical Applications -- 10.1 Introduction -- 10.2 Composite Materials for Drug Delivery -- 10.2.1 Characteristics of Composites -- 10.2.2 Role of Composite Materials in Drug Delivery -- 10.2.2.1 Structural Integrity -- 10.2.2.2 Controlled Release Properties -- 10.2.2.3 Enhanced Drug Loading Capacity -- 10.2.2.4 Tailored Material Properties -- 10.2.3 Importance of Selecting Suitable Matrix Materials -- 10.2.3.1 Biocompatibility -- 10.2.3.2 Degradability and Biodegradability -- 10.2.3.3 Mechanical Properties -- 10.2.3.4 Drug Compatibility -- 10.2.3.5 Fabrication Compatibility -- 10.2.3.6 Cost and Accessibility -- 10.3 Factors Influencing Composite Selection -- 10.3.1 Matrix Material Properties -- 10.3.2 Release Mechanisms (Controlled and Burst Release) -- 10.3.3 Toxicity Evaluation of Composite Materials -- 10.3.4 Biocompatibility Assessment -- 10.3.4.1 In Vitro Cell Culture Studies -- 10.3.4.2 Hemocompatibility Studies -- 10.3.4.3 In Vivo Animal Studies -- 10.3.4.4 Histological Analysis -- 10.3.4.5 Immune Response Evaluation -- 10.3.4.6 Biodegradation Assessment -- 10.4 Surface Engineering Considerations -- 10.4.1 Impact of Surface Engineering on Wear and Friction -- 10.4.2 Techniques for Enhancing Surface Properties of Drug-Eluting Composites -- 10.4.2.1 Surface Coatings -- 10.4.2.2 Plasma Treatment -- 10.4.2.3 Surface Grafting -- 10.4.2.4 Dip Coating -- 10.4.2.5 Spray Coating System -- 10.4.2.6 Electrotreated Coating.
10.4.2.7 Nanocoating and Nanoparticle Incorporation.
Record Nr. UNINA-9910869175703321
Kumar Abhishek  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau
Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau
Edizione [1st ed. 2018.]
Pubbl/distr/stampa New Delhi : , : Springer India : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (432 pages) : illustrations, tables
Disciplina 333.794
Soggetto topico Renewable energy resources
Climate change
Agriculture
Nature
Environment
Educational technology
Economic sociology
Renewable and Green Energy
Climate Change
Popular Science in Nature and Environment
Educational Technology
Organizational Studies, Economic Sociology
ISBN 81-322-3763-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Global warming, climate change and greenhouse-gas mitigation -- Chapter 3. Historical development of biofuels -- Chapter 4. Perspective of biofuel production from different sources -- Chapter 5. Potential biomass for biofuels from wastelands -- Chapter 6. Predicting high and stable biomass production by calorirespirometry: a novel approach -- Chapter 7. Appropriate rural technologies: 1. agricultural waste  to  charcoal 2. strategies for biogas production from organic garbage -- Chapter 8. Biofuel production: Lignocellulosic feedstock improvement for biofuel production through molecular breeding and biotechnology -- Chapter 9. A review on first- and second-generation biofuel production -- Chapter 10. Critical evaluation of biodiesel production initiatives in India -- Chapter 11. Biofuel sector in Malaysia: challenges and future prospects -- Chapter 12. Assessment of non-plantation biomass resources potential for energy in India -- Chapter 13. Agrotechnology, production and demonstration of high quality planting material in three tier system for biofuels in semi-arid and arid conditions -- Chapter 14. Alternative biomass from saline and semi-arid and arid conditions as a source of biofuels:  1. Salicornia in Gujrat -- Chapter 15. Alternative Biomass from saline and semi-arid and arid conditions as a source of biofuels:  2. Calotropis species in Rajasthan -- Chapter 16. Potential of lignocellulosic materials for production of ethanol -- Chapter 17. Agro industrial lignocellulosic waste: an alternative to unravel the future bioenergy -- Chapter 18. Third-generation biofuel: algal biofuels as a sustainable energy source -- Chapter 19. Recent progress in the genetic engineering of biofuel crops -- Chapter 20. Bioresources and technologies that accelerate biomass research -- Chapter 21. Biotechnological research in Cryptomeria japonica -- Chapter 22. Cinnamyl alcohol dehydrogenase deficiency causes brown midrib phenotype in rice -- Chapter 23. The distribution, evolution and transposition of the mariner-like elements in bamboo -- Chapter 24. Novel molecular tools for metabolic engineering to improve microalgae-based biofuel production -- Chapter 25. Synthetic and semi-synthetic metabolic pathways for fourth-generation biofuel production: Future projections.
Record Nr. UNINA-9910299596903321
New Delhi : , : Springer India : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Halophytes vis-à-vis Saline Agriculture : Perspectives and Opportunities for Food Security / / edited by Jagdish Chander Dagar, Sharda Rani Gupta, Ashwani Kumar
Halophytes vis-à-vis Saline Agriculture : Perspectives and Opportunities for Food Security / / edited by Jagdish Chander Dagar, Sharda Rani Gupta, Ashwani Kumar
Autore Dagar Jagdish Chander
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (572 pages)
Disciplina 630
Altri autori (Persone) GuptaSharda Rani
KumarAshwani
Soggetto topico Agriculture
Stress (Physiology)
Plants
Biotechnology
Plant Stress Responses
ISBN 9789819731572
9789819731565
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction: Definition, Evolutionary Trends, Classification, Historical Background, and Prospects of Halophytes in Agriculture -- Chapter 2. An Ecological Overview of Halophytes: Global Distribution, Floristic Diversity, Vegetation Composition and Utilization -- Chapter 3. Mangroves and Associated Flora: Prospects for Utilization in Coastal Agriculture -- Chapter 4. Seed Germination, Seed Bank and Reproductive Eco-physiology of Halophytes -- Chapter 5. Rare and Endangered Halophytes: Biodiversity, Economic Importance and Strategies for their Conservation -- Chapter 6. Halophytes at the Crossroads: Morphological, Anatomical, Physiological and Biochemical Responses to Salinity Stress -- Chapter 7. Ecophysiological Constraints under Salinity Stress: halophytes versus Non-halophytes -- Chapter 8. Exploring Eco-physiological Constraints in Halophytes and Innovative Strategies for Advancing Biosaline Agriculture -- Chapter 9. Engineering Salt Tolerance in Crops by CRISPR Mediated Genome Editing Technology:Target Traits, Current Perspective and Future Challenges -- Chapter 10. Mining Halophytic Genes for Developing Salt Tolerance in Crop Plants -- Chapter 11. Halotolerant Microbiome and their Role in Ameliorating Ecological Stress -- Chapter 12. Antioxidative Response Mechanisms in Halophytes: Their Role in Stress Defense -- Chapter 13. Genetic Treasures from Halophytes: Unlocking Salt Stress Tolerance Genes -- Chapter 14. Halophytic Genes to Edit Glycophyte’s Genome for Salinity Tolerance -- Chapter 15. Halophytes as Alternative Food and Cash Crops for Future Sustainability -- Chapter 16. Exploring the Potential of Halophytes for Bioremediation of Salt-Affected Soils: A Review -- Chapter 17. Halophytic Crops as a Solution for Food Security, Land Rehabilitation, and Mitigating Future Water Crises by Utilizing Marginal Quality Waters -- Chapter 18. Domestication of Wild Halophytes for Profitable Biosaline Agriculture -- Chapter 19. Harnessing the Potential of Halophytes for Enhanced Resilience in Arid Agroecosystems -- Chapter 20. Synthesis: Prospects of Halophytes in Saline Agriculture to Achieve Food and Livestock Security.
Record Nr. UNINA-9910881089503321
Dagar Jagdish Chander  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nutraceuticals from Fruit and Vegetable Waste
Nutraceuticals from Fruit and Vegetable Waste
Autore Tomer Vidisha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (562 pages)
Altri autori (Persone) ChhikaraNavnidhi
KumarAshwani
PanghalAnil
Collana Bioprocessing in Food Science Series
ISBN 1-119-80398-5
1-119-80397-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Valorisation of Fruit and Vegetable Waste -- 1.1 Introduction -- 1.2 Valorisation of By-Products from Fruit and Vegetable Processing Industry -- 1.2.1 Oil -- 1.2.2 Essential Oils -- 1.2.3 Pectin -- 1.2.4 Pigments -- 1.2.5 Biofuels -- 1.2.6 Organic Acids -- 1.2.7 Enzymes -- 1.2.8 Bioactive Compounds -- 1.2.9 Others -- 1.3 Conclusion -- References -- Chapter 2 Nutraceuticals from Guava Waste -- Abbrevations -- 2.1 Introduction -- 2.2 Guava Waste Types and Composition -- 2.2.1 Guava Leaves -- 2.2.2 Guava Seeds -- 2.2.3 Guava Pulp -- 2.2.4 Guava Pomace -- 2.2.5 Other Waste -- 2.3 Bioactive Potential of Guava Waste -- 2.3.1 Antioxidant Activity -- 2.3.2 Anti-Inflammatory Activity -- 2.3.3 Antidiabetic Activity -- 2.3.4 Antidiarrheal Activity -- 2.3.5 Antimicrobial Activity -- 2.3.6 Anticancer Activity -- 2.3.7 Acne Lesions -- 2.3.8 Antitussive Effects -- 2.3.9 Hepatoprotective Effects -- 2.3.10 Antigenotoxic and Antimutagenic Effects -- 2.3.11 Anti-Allergic Effects -- 2.3.12 Antinociceptive Effects -- 2.3.13 Wound Healing -- 2.4 Application of Guava Waste -- 2.4.1 Health and Cosmetics -- 2.4.2 Food Industry -- 2.4.3 Bio-Remediation -- 2.4.4 Biotechnological Aspects -- 2.4.5 Animal Feed -- 2.4.6 Fermentation -- 2.4.7 Water Treatment Agent -- 2.4.8 Production of Enzymes -- 2.4.9 Functional Ingredient in Developing Various Food Products -- 2.4.10 Other Applications -- 2.5 Conclusion -- References -- Chapter 3 Nutraceuticals from Emblica officinalis Waste -- 3.1 Introduction -- 3.2 Composition of Amla Waste -- 3.2.1 Pomace -- 3.2.1.1 Nutritional Composition -- 3.2.1.2 Phytochemical Composition -- 3.2.1.3 Utilization -- 3.2.2 Amla Seed and Seed Coat -- 3.2.2.1 Nutritional Composition -- 3.2.2.2 Phytochemical Composition -- 3.3 Utilization of Amla Waste.
3.4 Pharmaceutical Potential of Amla Waste -- 3.5 Other Amla Waste -- 3.6 Conclusion -- References -- Chapter 4 Nutraceuticals from Apple Waste -- 4.1 Introduction -- 4.2 Nutritional Profile and Physicochemical Composition -- 4.2.1 Moisture -- 4.2.2 Carbohydrates -- 4.2.3 Polyphenols -- 4.2.4 Lipids -- 4.2.5 Proteins -- 4.2.6 Vitamins -- 4.2.7 Minerals -- 4.2.8 Enzymes -- 4.2.9 Others -- 4.3 Bio-Actives and Functional Ingredients from Apple Pomace -- 4.3.1 Dietary Fibres -- 4.3.2 Pectin -- 4.3.3 Xyloglucan -- 4.3.4 Microcrystalline Cellulose -- 4.3.5 Polyphenols -- 4.3.6 Triterpenoids -- 4.3.7 Organic Acids -- 4.3.8 Minerals -- 4.3.9 Vitamins -- 4.3.10 Natural Pigments -- 4.4 Extraction of Bioactives from Apple Pomace -- 4.4.1 Maceration -- 4.4.2 Microwave-Assisted Extraction (MAE) -- 4.4.3 Ultrasound-Assisted Extraction (UAE) -- 4.4.4 Supercritical Fluid Extraction (SFE) -- 4.5 Use of Apple Pomace for Various Applications -- 4.5.1 Valuable Ingredient for Food Products -- 4.5.1.1 Bakery Products -- 4.5.1.2 Noodles -- 4.5.1.3 Fat and Sugar Replacements -- 4.5.2 Bioplastic Films -- 4.5.3 Production of Acids -- 4.5.4 Natural Colours -- 4.6 Future Prospects and Conclusion -- References -- Chapter 5 Avocado -- 5.1 Introduction -- 5.2 Nutritional Composition of Fruit Waste -- 5.2.1 Fruit -- 5.2.2 Peel -- 5.2.3 Seed -- 5.2.4 Pulp -- 5.3 Phytochemical Composition of Avocado Waste -- 5.3.1 Peel -- 5.3.2 Seed -- 5.3.3 Pulp -- 5.4 Pharmaceutical Potential of Fruit Waste -- 5.4.1 Peel -- 5.4.1.1 Anti-Oxidant Activity -- 5.4.1.2 Anti-Inflammatory Activity -- 5.4.1.3 Antimicrobial Activity -- 5.4.1.4 Anticancer Activity -- 5.4.1.5 Effect on Colonic Homeostasis -- 5.4.1.6 Radioprotective Effect -- 5.4.1.7 Antidiabetic Activity -- 5.4.1.8 Wound-Healing Activity -- 5.4.1.9 Anti-Aging Activity -- 5.4.1.10 Hypolipidemic Activity -- 5.4.1.11 Neuroprotective Activity.
5.4.2 Seed -- 5.4.2.1 Antimicrobial Activity -- 5.4.2.2 Cytotoxic Activity -- 5.4.2.3 Hypo-Cholesterolemic Activity -- 5.4.2.4 Antidiabetic Activity -- 5.4.2.5 Antidiarrhoeal Activity -- 5.4.2.6 Anti-Inflammatory Activity -- 5.4.2.7 Antifungal Activity -- 5.4.2.8 Anti-Oxidant Activity -- 5.4.2.9 Anti-Ototoxicity Activity -- 5.4.2.10 Neuroprotective Activity -- 5.4.2.11 Anti-Proliferative Activity -- 5.4.2.12 Wound-Healing Activity -- 5.4.3 Pulp -- 5.4.3.1 Antimicrobial Activity -- 5.4.3.2 Anticancer Activity -- 5.4.3.3 Antidiabetic and Hepatoprotective Activity -- 5.4.3.4 Hypo-Cholesterolemic Activity -- 5.4.3.5 Anti-Thrombotic Activity -- 5.5 Other Methods of Utilization -- 5.5.1 Peel -- 5.5.2 Seed -- 5.5.3 Pulp -- 5.6 Conclusion -- References -- Websites -- Chapter 6 Banana Waste as a Nutraceuticals Product -- 6.1 Introduction -- 6.2 Chemical Composition -- 6.3 Medicinal Properties -- 6.3.1 Antioxidant Activity -- 6.3.2 Antimicrobial Activity -- 6.4 Utilization of Banana Waste -- 6.5 Development of By-Products from Banana Waste -- 6.5.1 Banana Pseudostem Flour (BPF) -- 6.5.2 Banana Peel Powder (BPP) -- 6.5.3 Banana Peel Extract -- 6.5.4 Whole Green Banana Flour (WGBF) -- 6.5.5 Green Banana Pseudostem Flour (GBPF) -- 6.5.6 Banana Leaf Extract -- 6.5.7 Banana Flower -- 6.6 Summary -- Abbreviations -- References -- Chapter 7 Burmese Grape -- 7.1 Introduction -- 7.2 Burmese Grape Fruit and Fruit Waste -- 7.3 Nutraceuticals and Functional Activities of Burmese Grape Waste -- 7.3.1 Seed -- 7.3.1.1 Source of Fatty Acids -- 7.3.1.2 Source of Polysaccharides -- 7.3.1.3 Phytochemicals and Functional Properties -- 7.3.2 Peel -- 7.3.2.1 Nutrients in Burmese Grape Peel -- 7.3.2.2 Source of Polysaccharides -- 7.3.2.3 Phytochemicals and Functional Properties -- 7.4 Burmese Grape Tree Parts -- 7.4.1 Leaves -- 7.4.1.1 Phytochemicals and Functional Properties.
7.4.2 Stem Bark -- 7.5 Conclusion -- List of Abbreviations -- References -- Chapter 8 Citrus -- 8.1 Introduction -- 8.2 Phytochemicals in Citrus Waste -- 8.3 Principal Non-Conventional Technologies to Extract High Biological Value Compounds from Citrus Waste -- 8.3.1 Ultrasound-Assisted Extraction (UAE) -- 8.3.2 Microwave-Assisted Extraction (MAE) -- 8.3.3 Supercritical Fluid Extraction -- 8.3.4 Pressurized Water Extraction (PWE) -- 8.3.5 Pulsed Electric Field -- 8.3.6 High Hydrostatic Pressures -- 8.3.7 Enzyme-Assisted Extraction (EAE) -- 8.4 Citrus Waste and Its Utilization -- 8.4.1 Citrus Waste and Biofuel Production -- 8.4.2 Citrus Waste and Food Preservation Against -- 8.4.3 Citrus Waste and Bioactive Compounds -- 8.4.4 Citrus Waste and Food, Pharma, and Other Applications -- 8.5 Conclusion -- References -- Chapter 9 Dates -- 9.1 Introduction -- 9.1.1 Dates and Their Origin -- 9.1.2 Stages of Growth of Dates -- 9.1.3 Structure of Dates -- 9.2 Date Seeds -- 9.2.1 Sensory Properties of Date Seeds -- 9.3 Integrating Dates with Food for Developing Value-Added Recipes -- 9.4 Nutritional Benefits -- 9.4.1 Carbohydrates -- 9.4.2 Protein -- 9.4.3 Fat -- 9.4.4 Fiber -- 9.4.5 Vitamins -- 9.4.6 Minerals -- 9.5 Antioxidants and Phytochemicals in Dates -- 9.5.1 Phenols -- 9.5.2 Tocopherols and Tocotrienols -- 9.5.3 Flavonoids -- 9.5.4 Carotenoids -- 9.6 Health Benefits -- 9.7 Conclusion -- References -- Chapter 10 Ginger (Zingiber officinale) -- 10.1 Introduction -- 10.2 Ginger Varieties and Its Features -- 10.3 Nutritional and Phytochemical Components of Ginger -- 10.4 Processing of Ginger -- 10.4.1 Effect of Various Processing on the Functional Properties of Ginger -- 10.5 By-Products Generated from Ginger Processing -- 10.6 Nutraceutical Potential and Utilization of Ginger By-Products -- 10.6.1 Ginger Leaves -- 10.6.2 Ginger Stalk/Stem.
10.6.3 Ginger Peel -- 10.6.4 Ginger Pomace and Precipitate -- 10.7 Future Prospects -- References -- Chapter 11 Jackfruit -- 11.1 Introduction -- 11.2 Types of Jackfruit Waste and By-Products -- 11.3 Nutraceuticals and Functional Activities of Jackfruit Waste and By-Products -- 11.3.1 Jackfruit Seed -- 11.3.1.1 Nutrients -- 11.3.1.2 Phytochemicals and Functional Activities -- 11.3.1.3 Organic Acids -- 11.3.2 Jackfruit Flake -- 11.3.2.1 Nutrients -- 11.3.2.2 Phytochemicals and Functional Properties -- 11.3.2.3 Pectin -- 11.3.2.4 Organic Acids -- 11.3.3 Axis of Jackfruit -- 11.3.3.1 Fatty Acids -- 11.3.3.2 Phytochemicals and Functions -- 11.3.3.3 Pectin -- 11.3.4 Jackfruit Peel -- 11.3.4.1 Proximate Compounds -- 11.3.4.2 Phytochemicals and Their Functional Activities -- 11.3.4.3 Pectin -- 11.4 Parts of Jackfruit Tree -- 11.4.1 Phytochemicals and Functional Properties -- 11.5 Conclusion -- List of Abbreviations -- References -- Chapter 12 Development of Nutraceuticals from the Waste of Loquat -- 12.1 Introduction -- 12.2 Importance of Waste Material of Fruits -- 12.3 The Worldwide Growth Pattern of Loquat -- 12.4 Physiology and Biochemistry of Loquat -- 12.5 Use of Loquat Tree and Its Parts -- 12.6 Nutraceutical Properties -- Conclusion -- References -- Chapter 13 Mango -- 13.1 Introduction -- 13.2 Mango Peel -- 13.3 Nutritional Composition -- 13.4 Phytochemical Composition -- 13.5 Utilization of Mango Peel -- 13.6 Mango Kernel -- 13.7 Nutritional Composition of Mango Kernel -- 13.8 Phytochemical Composition of Mango Kernel -- 13.9 Utilization of Mango Kernel -- 13.10 Other By-Products of Mango Waste -- References -- Chapter 14 Melon -- 14.1 Introduction -- 14.2 History, Origin and Domestication -- 14.3 Diversity and Botanical Groups of Melon -- 14.4 Consumer Preference for Melon -- 14.5 Nutritional Importance, Health Benefits and Culinary Uses of Melon.
14.6 Fruits and Vegetables Wastage.
Record Nr. UNINA-9910877182803321
Tomer Vidisha  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui