top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Autore Prasad Arbind
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (458 pages)
Altri autori (Persone) KumarAshwani
GuptaManoj
PrasadArbind
ISBN 1-394-16696-6
1-394-16698-2
1-394-16697-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites.
6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application.
8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes.
10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization.
12.4 Conclusion and Future Directions.
Record Nr. UNINA-9910830708403321
Prasad Arbind  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Advanced Materials and Manufacturing Techniques for Biomedical Applications
Autore Prasad Arbind
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (458 pages)
Disciplina 610.28
Altri autori (Persone) KumarAshwani
GuptaManoj
PrasadArbind
Soggetto topico Biomedical materials
Tissue engineering
ISBN 9781394166961
1394166966
9781394166985
1394166982
9781394166978
1394166974
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites.
6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application.
8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes.
10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization.
12.4 Conclusion and Future Directions.
Record Nr. UNINA-9911019889203321
Prasad Arbind  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau
Biofuels: Greenhouse Gas Mitigation and Global Warming [[electronic resource] ] : Next Generation Biofuels and Role of Biotechnology / / edited by Ashwani Kumar, Shinjiro Ogita, Yuan-Yeu Yau
Edizione [1st ed. 2018.]
Pubbl/distr/stampa New Delhi : , : Springer India : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (432 pages) : illustrations, tables
Disciplina 333.794
Soggetto topico Renewable energy resources
Climatic changes
Agriculture
Nature
Ecology
Educational technology
Economics - Sociological aspects
Renewable and Green Energy
Climate Change
Popular Science in Nature and Environment
Educational Technology
Organizational Studies, Economic Sociology
ISBN 81-322-3763-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Global warming, climate change and greenhouse-gas mitigation -- Chapter 3. Historical development of biofuels -- Chapter 4. Perspective of biofuel production from different sources -- Chapter 5. Potential biomass for biofuels from wastelands -- Chapter 6. Predicting high and stable biomass production by calorirespirometry: a novel approach -- Chapter 7. Appropriate rural technologies: 1. agricultural waste  to  charcoal 2. strategies for biogas production from organic garbage -- Chapter 8. Biofuel production: Lignocellulosic feedstock improvement for biofuel production through molecular breeding and biotechnology -- Chapter 9. A review on first- and second-generation biofuel production -- Chapter 10. Critical evaluation of biodiesel production initiatives in India -- Chapter 11. Biofuel sector in Malaysia: challenges and future prospects -- Chapter 12. Assessment of non-plantation biomass resources potential for energy in India -- Chapter 13. Agrotechnology, production and demonstration of high quality planting material in three tier system for biofuels in semi-arid and arid conditions -- Chapter 14. Alternative biomass from saline and semi-arid and arid conditions as a source of biofuels:  1. Salicornia in Gujrat -- Chapter 15. Alternative Biomass from saline and semi-arid and arid conditions as a source of biofuels:  2. Calotropis species in Rajasthan -- Chapter 16. Potential of lignocellulosic materials for production of ethanol -- Chapter 17. Agro industrial lignocellulosic waste: an alternative to unravel the future bioenergy -- Chapter 18. Third-generation biofuel: algal biofuels as a sustainable energy source -- Chapter 19. Recent progress in the genetic engineering of biofuel crops -- Chapter 20. Bioresources and technologies that accelerate biomass research -- Chapter 21. Biotechnological research in Cryptomeria japonica -- Chapter 22. Cinnamyl alcohol dehydrogenase deficiency causes brown midrib phenotype in rice -- Chapter 23. The distribution, evolution and transposition of the mariner-like elements in bamboo -- Chapter 24. Novel molecular tools for metabolic engineering to improve microalgae-based biofuel production -- Chapter 25. Synthetic and semi-synthetic metabolic pathways for fourth-generation biofuel production: Future projections.
Record Nr. UNINA-9910299596903321
New Delhi : , : Springer India : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cutting Edge Technologies for Developing Future Crop Plants / / edited by Anita Mann, Naresh Kumar, Ashwani Kumar, Priyanka Chandra, Satish Kumar Sanwal, Parvender Sheoran
Cutting Edge Technologies for Developing Future Crop Plants / / edited by Anita Mann, Naresh Kumar, Ashwani Kumar, Priyanka Chandra, Satish Kumar Sanwal, Parvender Sheoran
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XXVII, 455 p. 39 illus., 37 illus. in color.)
Disciplina 630
664.024
Soggetto topico Agricultural biotechnology
Agricultural genome mapping
Soil science
Agricultural Biotechnology
Agricultural Genetics
Soil Science
ISBN 981-9625-08-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Farmer’s Perspective on Climate Change and Agricultural Production -- 2. Greenhouse gas emission: problems, global reality and future perspectives -- 3. Improving soil properties through various soil amendments under changing climate scenario -- 4. Paradigm shift from traditional to innovative extension approaches in changing agricultural scenario for better crop productivity -- 5. Impact of Agri-based technological interventions for managing poor soils and policy insights -- 6. Advanced strategies for crop improvement against abiotic stresses: An integrated view from breeding to genomics -- 7. Breeding strategies for improved multi-stress resilient crops -- 8. Speed Breeding: A budding technique to improve crop plants for multi-stress tolerance -- 9. Epigenetics regulation of abiotic stress in crop plants -- 10. Gene editing prospective for engineering climate smart plants -- 11. Next-gen strategies in host plant resistance to insects: breakthroughs and future horizons -- 12. Underlying survival mechanisms in model trees for enhanced abiotic stress tolerance -- 13. Homeostasis of plant metabolites in mitigating abiotic stress challenges -- 14. Integrating Multi-Omics Strategies to Enhance Crop Resilience in a Changing Climate -- 15. Advancing Sustainable Agriculture Through Plant-Microbial Interactions Amid Climate Change -- 16. CRISPR/Cas-based fungal genome engineering for secondary metabolite production: progress and challenges -- 17. Microbial Contributions to Crop Adaptation: Innovation for Climate-Resilient Agriculture -- 18. Effect of Climate Change on Seed Quality Development -- 19. Recent advances towards abiotic stresses tolerance and improvement in barnyard millet: a climate-resilient crop for food security -- 20. Challenges and opportunities of cultivating sandalwood (Santalum album) under abiotic stress conditions -- 21. Potential of halophytes in greening the barren land and making use of waste lands.
Record Nr. UNINA-9910991171903321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Management in Renewable Sources Integrated System : Proceedings of ICGEST 2023, Volume 1 / / edited by Ashwani Kumar, S. N. Singh, Pradeep Kumar
Energy Management in Renewable Sources Integrated System : Proceedings of ICGEST 2023, Volume 1 / / edited by Ashwani Kumar, S. N. Singh, Pradeep Kumar
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVIII, 416 p. 231 illus., 213 illus. in color.)
Disciplina 621.042
Collana Lecture Notes in Networks and Systems
Soggetto topico Renewable energy sources
Energy harvesting
Energy policy
Renewable Energy
Energy Harvesting
Energy Policy, Economics and Management
ISBN 981-9610-12-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910988294503321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Artificial Intelligence
Handbook of Artificial Intelligence
Autore Shanthi Dumpala
Edizione [1st ed.]
Pubbl/distr/stampa Sharjah : , : Bentham Science Publishers, , 2023
Descrizione fisica 1 online resource (297 pages)
Altri autori (Persone) MadhuravaniB
KumarAshwani
Soggetto topico Artificial intelligence
Machine learning
ISBN 9789815124514
981512451X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Machine Learning Techniques and their Applications: Survey -- P. Karthik1,*, K. Chandra Sekhar1 and D. Latha2 -- 1. INTRODUCTION -- 1.1. History of AI & -- ML -- 1.2. Applications of ML -- 1.2.1. Speech Recognition [19] -- 1.2.2. Predictive Analytics [19] -- 1.2.3. Product Recommendation [20] -- 1.2.4. Image Recognition [19] -- 1.2.5. Video Surveillance [20] -- 1.2.6. Extraction [19] -- 1.2.7. Traffic Alerts [20] -- 1.2.8. Medical Diagnosis [19] -- 1.2.9. Sentiment Analysis [20] -- 1.2.10. Google Translate [20] -- 1.2.11. Virtual Personal Assistants [20] -- 1.3. Difference Between Traditional Programming Concepts and ML Concepts [23] -- 1.3.1. Why Must We Learn ML? -- 1.3.2. Difference Between AI & -- ML [23] -- 1.4. Steps to Learn ML -- 1.4.1. Data Gathering [24] -- 1.4.2. Data Preparation [24] -- 1.4.3. Selecting the Model [24] -- 1.4.4. Training the Model [24] -- 1.4.5. Evaluate the Model [24] -- 1.4.6. Parameter Tuning [24] -- 1.4.7. Make Patterns [24] -- 1.5. Types of ML -- 1.6. Basic ML Methods -- 1.7. ML in Agriculture -- 1.8. ML in Sentiment Analysis -- 1.9. ML in Stock Prediction -- 1.10. ML in Disease Prediction -- 1.11. ML in Data Mining -- 1.12. ML in COVID-19 -- 1.13. ML in Cyber Security -- 1.14. ML in Cloud Computing -- 1.15. ML in Big Data Analytics (BDA) -- 1.16. ML in Recommendation System -- 1.17. Future Experiments on Real Time Problems Using ML -- CONCLUSION -- REFERENCES -- Applications of Machine Learning -- Prediction using Machine Learning -- Adluri Vijaya Lakshmi1,*, Sowmya Gudipati Sri2, Ponnuru Sowjanya2 and K. Vedavathi3 -- 1. INTRODUCTION TO MACHINE LEARNING -- 2. CLASSIFICATION OF MACHINE-LEARNING -- 2.1. Supervised Learning -- 2.2. Unsupervised Learning -- 2.3. Reinforcement Learning.
3. BREAST CANCER PREDICTION USING ML TECHNIQUES -- 3.1. Introduction -- 3.2. Related Works -- 4. HEART DISEASE PREDICTION USING MACHINE LEARNING TECHNIQUES -- 4.1. Introduction -- 4.2. Existing System -- 5. PREDICTING IPL RESULTS USING ML TECHNIQUES -- 5.1. Introduction -- 5.2. Related Work -- 6. PREDICTION OF SOFTWARE BUG UTILISING ML TECHNIQUE -- 6.1. Introduction -- 6.2. Related Work -- 7. PREDICTION OF RAINFALL USING MACHINE LEARNING TECHNIQUES -- 7.1. Introduction -- 7.2. Related Work -- 8. WEATHER PREDICTION USING MACHINE LEARNING TECHNIQUES -- 8.1. Machine Learning -- 8.2. Use of Algorithms -- CONCLUSION -- REFERENCES -- Machine Learning Algorithms for Health Care Data Analytics Handling Imbalanced Datasets -- T. Sajana1,* and K.V.S.N. Rama Rao2 -- 1. INTRODUCTION -- 2. MACHINE LEARNING- AN INTELLIGENT AUTOMATED SYSTEM -- 3. TYPES OF DATASETS-BY NATURE -- 3.1. Balanced Datasets -- 3.2. Imbalanced Datasets -- 4. ISSUES WITH IMBALANCED DATASETS -- 4.1. Class Imbalance Problem -- 4.2. Classifiers Learning On Imbalanced Datasets -- 4.3. Taxonomy of Various Techniques on Imbalanced Datasets -- 5. APPLICATION OF CONVENTIONAL DATA MINING & -- MACHINE LEARNING TECHNIQUES FOR HANDLING CLASS IMBALANCE PROBLEM -- 6. APPLICATION OF DATA LEVEL METHODS FOR HANDLING CLASS IMBALANCE PROBLEM -- 6.1. Undersampling -- 6.2. Oversampling -- 7. APPLICATION OF ALGORITHMIC LEVEL METHODS FOR HANDLING CLASS IMBALANCE PROBLEM -- 7.1. Cost-Sensitive Classifiers -- 7.2. Ensemble Techniques -- CONCLUSION -- REFERENCES -- AI for Crop Improvement -- S.V. Vasantha1,* -- 1. INTRODUCTION -- 2. GENOMICS FOR AGRICULTURE -- 3. AI FOR AGRICULTURE -- 4. AI TECHNIQUES FOR CROP IMPROVEMENT -- 5. AI-BASED CROP IMPROVEMENT MODEL (AI-CIM) -- 5.1. Automation of Modern Crop Improvement Process -- 5.2. AI Model for Enhanced Crop Breeding -- 5.2.1. Automated Selective Breeding System.
5.2.2. Automated Plant Health Monitoring System -- CONCLUSION -- REFERENCES -- Real-Time Object Detection and Localization for Autonomous Driving -- Swathi Gowroju1,*, V. Swathi1, J. Narasimha Murthy1 and D. Sai Kamesh1 -- 1. INTRODUCTION -- 2. LITERATURE SURVEY -- 3. PROPOSED METHOD -- 3.1. Proposed Architecture -- 4. IMPLEMENTATION -- 4.1. Bounding Boxes -- 4.2. Anchor Boxes -- 4.3. Non-max Suppression -- 5. RELU ACTIVATION -- 6. LOSS FUNCTION -- 7. TRAINING PARAMETERS -- 8. RESULTS -- CONCLUSION -- ACKNOWLEDGEMENT -- REFERENCES -- Machine Learning Techniques in Image Segmentation -- Narmada Kari1,*, Sanjay Kumar Singh1 and Dumpala Shanthi2 -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. METHODOLOGY -- 3.1. Collection of Data -- 3.2. Pre-processing of Images -- 3.3. Training Options -- 3.4. Define Label IDs -- 3.5. Feature Extraction -- 3.6. Feature Reduction/Selection -- 3.7. Feature Classification -- 3.8. Machine Learning -- 3.8.1. Supervised Learning -- 3.8.2. Unsupervised Learning -- 3.8.3. Reinforcement Learning -- 3.8.4. Deep Learning -- 3.8.5. Deep Reinforcement Learning -- CONCLUSION -- REFERENCES -- Optimal Page Ranking Technique for Webpage Personalization Using Semantic Classifier -- P. Pranitha1,*, A. Manjula1, G. Narsimha2 and K. Vaishali3 -- 1. INTRODUCTION -- 2. LITERATURE SURVEY -- 2.1. Challenges -- 2.2. Motivation of Research -- 2.3. Proposed Methodology -- 2.4. Generation of Web Pages -- 3. PRE-PROCESSING -- 3.1. Feature Extraction and Web Page Ranking -- 3.2. ENN-based Semantic Features -- 4. RE-RANKING OF WEB PAGES -- 4.1. Grass Hopper Optimization (GHO) -- 4.1.1. Social Interaction Calculation -- 4.1.2. Solution Updating -- 4.2. Artificial Bee Colony Algorithm (ABC) -- 4.2.1. Employed Bee Operation -- 4.2.2. Probability Calculation -- 4.2.3. Onlooker Bee Operation -- 4.3. Oppositional Grass Bee Optimization (OGBEE).
4.3.1. Opposition Behavior Learning (OBL) -- 4.3.2. Fitness Calculation -- 4.3.3. Updating using Grasshopper Optimization -- 4.3.4. Scout Bee Operation -- 4.3.5. Termination Criteria -- 5. RESULTS AND DISCUSSION -- 5.1. Evaluation Metrics -- 5.1.1. Precision -- 5.1.2. Recall -- 5.1.3. F-measure -- CONCLUSION -- REFERENCES -- Text Analytics -- Divanu Sameera1,*, Niraj Sharma2 and R.V. Ramana Chary3 -- 1. INTRODUCTION -- 1.1. Text Analytics Basics -- 1.2. Text Analytics Examples -- 2. HOW TO GET STARTED WITH TEXT ANALYTICS -- 2.1. Analyze Your Data -- 2.2. Use BI Tools to Understand Your Data -- 2.3. Final Words -- 3. EXAMPLES AND METHODS FOR TEXT ANALYTICS -- 3.1. Text Analytics Approach 1: Word Spotting -- 3.1.1. The Simplicity of the Word-spotting Approach is What Makes it so Appealing [28] -- 3.1.2. When Word Spotting is Acceptable? -- 3.2. Text Analytics Approach 2. Manual Rules -- 3.2.1. Multiple-word Meanings Make it Hard to Create Rules -- 3.2.2. Mentioned Word! = Core Topic -- 3.2.3. Rules -- 3.2.4. Taxonomies Don't Exist for Software Products and Many Other Businesses -- 3.2.5. Not Everyone can Maintain Rules -- 3.3. Text Analytics Approach 3. Text Categorization -- 3.3.1. What is Text Categorization, and How Does it Work? -- 3.3.2. You Won't Notice Emerging Themes -- 3.3.3. Lack of Transparency -- 3.3.4. Preparing and Managing Training Data is Hard -- 3.3.5. Re-training for Each New Dataset -- 3.4. Approach 4: Topic-Modelling -- 3.4.1. What's Incredible Regarding Topic-modelling -- 3.5. Approach 5. Thematic Analysis -- 3.5.1. Thematic Analysis: How it Works -- 3.5.2. Advantages and Disadvantages of Thematic Analysis -- 3.5.3. Human in The Loop -- 4. CASE STUDY -- CONCLUSION -- REFERENCES -- Human Activity Recognition System Using Smartphone -- R. Usha Rani1 and M. Sunitha1,* -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. MAIN TECHNIQUES.
4. SMARTPHONE HAR COMMANDS -- 4.1. HAR Section 1: Data Cleaning Through Preprocessing -- 4.1.1. Data Filtering -- 4.1.2. Data Segmentation -- 4.1.3. Reduction -- 4.1.4. Selection of Feature -- 4.2. HAR Section II: Procedure to Perform Classification -- CONCLUSION -- REFERENCES -- Smart Water Bottle with Smart Technology -- Dumpala Shanthi1,* -- 1. INTRODUCTION -- 2. EMBEDDED SYSTEM -- 3. ARDUINO NANO -- 4. PIN DIAGRAM -- 4.1. Serial Communication -- 4.2. Water Level Sensor -- 5. LDR: WORKING -- 6. APPLICATIONS -- 6.1. Light Dependent Resistor (LDR) Measurement -- 6.2. Message Management General Description -- 6.3. RA Mode -- 6.4. Tape Mode -- 6.5. Automatic Gain Control (AGC) -- 6.6. Sampling Use -- 7. MODULE -- 7.1. Types -- 7.2. Security Concerns -- 7.3. Other Devices' Interference -- 7.4. Streaming Media of Poor Quality -- 7.5. Specifications -- CONCLUSION -- REFERENCES -- Real World Applications of Machine Learning in Health Care -- Kari Narmada1,*, Sanjay Kumar Singh1 and Dumpala Shanthi2 -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. TYPES OF MACHINE LEARNING -- 3.1. Supervised Learning -- 3.2. Unsupervised Learning -- 3.3. Reinforcement Learning -- 3.4. Recommender Systems -- 4. MACHINE LEARNING APPLICATIONS IN HEALTH CARE -- 4.1. The Most Challenges For AI In Healthcare -- 4.2. Possible Risks to Generalizability in Clinical Research and Machine Learning In Health Care -- CONCLUSION -- REFERENCES -- Investigating and Identifying Fraudulent Behaviors of Medical Claims Data Using Machine Learning Algorithms -- Jyothi P. Naga1,*, K.V.S.N. Rama Rao2, L. Rajya3 and S. Suresh4 -- 1. INTRODUCTION -- 2. ROLE OF MACHINE LEARNING ALGORITHMS -- 3. VARIOUS KINDS OF HEALTHCARE DATA -- 4. EXISTED WORK OF DIFFERENT MODELS ON FRAUD DETECTION -- 4.1. General Model -- 4.2. Statistical Model -- 4.3. Supervised Models.
5. MECHANISM FOR INVESTIGATING AND IDENTIFYING THE FRAUDULENT BEHAVIORS OF MEDICAL CLAIMS DATA.
Record Nr. UNINA-9910915786003321
Shanthi Dumpala  
Sharjah : , : Bentham Science Publishers, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotechnology : Agriculture, Environment and Health / / edited by Acharya Balkrishna, Naveen Thakur, Vedpriya Arya, Ashwani Kumar
Nanotechnology : Agriculture, Environment and Health / / edited by Acharya Balkrishna, Naveen Thakur, Vedpriya Arya, Ashwani Kumar
Autore Balkrishna Acharya
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (330 pages)
Disciplina 530.41
620.115
Altri autori (Persone) ThakurNaveen
AryaVedpriya
KumarAshwani
Soggetto topico Nanoscience
Nanochemistry
Biotechnology
Public health
Agricultural biotechnology
Pollution
Nanophysics
Public Health
Agricultural Biotechnology
ISBN 9789819768141
9819768144
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nanotechnology Intervention for Sustainable Agriculture: Challenges and Possibilities -- Dynamic Applied Interactions amid Nanoparticles, Beneficial Soil Microorganisms, and Phytopathogens -- Influence of Nanoparticles in Orchestrating Plant Growth and Development -- Nano-biofertilizers and Nano-biopesticides: Impact of Future Agrochemicals -- Advancements in ZnO Nanomaterials for Enhancing Agricultural Systems -- Bionanoaugmentation: A novel approach for environment protection -- Nanomaterial-based photochemical degradation of environmental pollutants -- Nanotoxicology: A Threat to The Environment and Human Health -- Nanoparticles-mediated diagnosis of common human diseases: With special reference to gold nanoparticles -- Nanoparticles as drug delivery systems: Advances and challenges -- Recent advancements in nanobiology in the treatment of human diseases -- Futuristic role of green nanotechnology for sustainable agriculture, environment, and public health.
Record Nr. UNINA-9910886084403321
Balkrishna Acharya  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nutraceuticals from Fruit and Vegetable Waste
Nutraceuticals from Fruit and Vegetable Waste
Autore Tomer Vidisha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (562 pages)
Disciplina 664.08
Altri autori (Persone) ChhikaraNavnidhi
KumarAshwani
PanghalAnil
Collana Bioprocessing in Food Science Series
Soggetto topico Agricultural wastes
Sustainable development
ISBN 9781119803980
1119803985
9781119803973
1119803977
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Valorisation of Fruit and Vegetable Waste -- 1.1 Introduction -- 1.2 Valorisation of By-Products from Fruit and Vegetable Processing Industry -- 1.2.1 Oil -- 1.2.2 Essential Oils -- 1.2.3 Pectin -- 1.2.4 Pigments -- 1.2.5 Biofuels -- 1.2.6 Organic Acids -- 1.2.7 Enzymes -- 1.2.8 Bioactive Compounds -- 1.2.9 Others -- 1.3 Conclusion -- References -- Chapter 2 Nutraceuticals from Guava Waste -- Abbrevations -- 2.1 Introduction -- 2.2 Guava Waste Types and Composition -- 2.2.1 Guava Leaves -- 2.2.2 Guava Seeds -- 2.2.3 Guava Pulp -- 2.2.4 Guava Pomace -- 2.2.5 Other Waste -- 2.3 Bioactive Potential of Guava Waste -- 2.3.1 Antioxidant Activity -- 2.3.2 Anti-Inflammatory Activity -- 2.3.3 Antidiabetic Activity -- 2.3.4 Antidiarrheal Activity -- 2.3.5 Antimicrobial Activity -- 2.3.6 Anticancer Activity -- 2.3.7 Acne Lesions -- 2.3.8 Antitussive Effects -- 2.3.9 Hepatoprotective Effects -- 2.3.10 Antigenotoxic and Antimutagenic Effects -- 2.3.11 Anti-Allergic Effects -- 2.3.12 Antinociceptive Effects -- 2.3.13 Wound Healing -- 2.4 Application of Guava Waste -- 2.4.1 Health and Cosmetics -- 2.4.2 Food Industry -- 2.4.3 Bio-Remediation -- 2.4.4 Biotechnological Aspects -- 2.4.5 Animal Feed -- 2.4.6 Fermentation -- 2.4.7 Water Treatment Agent -- 2.4.8 Production of Enzymes -- 2.4.9 Functional Ingredient in Developing Various Food Products -- 2.4.10 Other Applications -- 2.5 Conclusion -- References -- Chapter 3 Nutraceuticals from Emblica officinalis Waste -- 3.1 Introduction -- 3.2 Composition of Amla Waste -- 3.2.1 Pomace -- 3.2.1.1 Nutritional Composition -- 3.2.1.2 Phytochemical Composition -- 3.2.1.3 Utilization -- 3.2.2 Amla Seed and Seed Coat -- 3.2.2.1 Nutritional Composition -- 3.2.2.2 Phytochemical Composition -- 3.3 Utilization of Amla Waste.
3.4 Pharmaceutical Potential of Amla Waste -- 3.5 Other Amla Waste -- 3.6 Conclusion -- References -- Chapter 4 Nutraceuticals from Apple Waste -- 4.1 Introduction -- 4.2 Nutritional Profile and Physicochemical Composition -- 4.2.1 Moisture -- 4.2.2 Carbohydrates -- 4.2.3 Polyphenols -- 4.2.4 Lipids -- 4.2.5 Proteins -- 4.2.6 Vitamins -- 4.2.7 Minerals -- 4.2.8 Enzymes -- 4.2.9 Others -- 4.3 Bio-Actives and Functional Ingredients from Apple Pomace -- 4.3.1 Dietary Fibres -- 4.3.2 Pectin -- 4.3.3 Xyloglucan -- 4.3.4 Microcrystalline Cellulose -- 4.3.5 Polyphenols -- 4.3.6 Triterpenoids -- 4.3.7 Organic Acids -- 4.3.8 Minerals -- 4.3.9 Vitamins -- 4.3.10 Natural Pigments -- 4.4 Extraction of Bioactives from Apple Pomace -- 4.4.1 Maceration -- 4.4.2 Microwave-Assisted Extraction (MAE) -- 4.4.3 Ultrasound-Assisted Extraction (UAE) -- 4.4.4 Supercritical Fluid Extraction (SFE) -- 4.5 Use of Apple Pomace for Various Applications -- 4.5.1 Valuable Ingredient for Food Products -- 4.5.1.1 Bakery Products -- 4.5.1.2 Noodles -- 4.5.1.3 Fat and Sugar Replacements -- 4.5.2 Bioplastic Films -- 4.5.3 Production of Acids -- 4.5.4 Natural Colours -- 4.6 Future Prospects and Conclusion -- References -- Chapter 5 Avocado -- 5.1 Introduction -- 5.2 Nutritional Composition of Fruit Waste -- 5.2.1 Fruit -- 5.2.2 Peel -- 5.2.3 Seed -- 5.2.4 Pulp -- 5.3 Phytochemical Composition of Avocado Waste -- 5.3.1 Peel -- 5.3.2 Seed -- 5.3.3 Pulp -- 5.4 Pharmaceutical Potential of Fruit Waste -- 5.4.1 Peel -- 5.4.1.1 Anti-Oxidant Activity -- 5.4.1.2 Anti-Inflammatory Activity -- 5.4.1.3 Antimicrobial Activity -- 5.4.1.4 Anticancer Activity -- 5.4.1.5 Effect on Colonic Homeostasis -- 5.4.1.6 Radioprotective Effect -- 5.4.1.7 Antidiabetic Activity -- 5.4.1.8 Wound-Healing Activity -- 5.4.1.9 Anti-Aging Activity -- 5.4.1.10 Hypolipidemic Activity -- 5.4.1.11 Neuroprotective Activity.
5.4.2 Seed -- 5.4.2.1 Antimicrobial Activity -- 5.4.2.2 Cytotoxic Activity -- 5.4.2.3 Hypo-Cholesterolemic Activity -- 5.4.2.4 Antidiabetic Activity -- 5.4.2.5 Antidiarrhoeal Activity -- 5.4.2.6 Anti-Inflammatory Activity -- 5.4.2.7 Antifungal Activity -- 5.4.2.8 Anti-Oxidant Activity -- 5.4.2.9 Anti-Ototoxicity Activity -- 5.4.2.10 Neuroprotective Activity -- 5.4.2.11 Anti-Proliferative Activity -- 5.4.2.12 Wound-Healing Activity -- 5.4.3 Pulp -- 5.4.3.1 Antimicrobial Activity -- 5.4.3.2 Anticancer Activity -- 5.4.3.3 Antidiabetic and Hepatoprotective Activity -- 5.4.3.4 Hypo-Cholesterolemic Activity -- 5.4.3.5 Anti-Thrombotic Activity -- 5.5 Other Methods of Utilization -- 5.5.1 Peel -- 5.5.2 Seed -- 5.5.3 Pulp -- 5.6 Conclusion -- References -- Websites -- Chapter 6 Banana Waste as a Nutraceuticals Product -- 6.1 Introduction -- 6.2 Chemical Composition -- 6.3 Medicinal Properties -- 6.3.1 Antioxidant Activity -- 6.3.2 Antimicrobial Activity -- 6.4 Utilization of Banana Waste -- 6.5 Development of By-Products from Banana Waste -- 6.5.1 Banana Pseudostem Flour (BPF) -- 6.5.2 Banana Peel Powder (BPP) -- 6.5.3 Banana Peel Extract -- 6.5.4 Whole Green Banana Flour (WGBF) -- 6.5.5 Green Banana Pseudostem Flour (GBPF) -- 6.5.6 Banana Leaf Extract -- 6.5.7 Banana Flower -- 6.6 Summary -- Abbreviations -- References -- Chapter 7 Burmese Grape -- 7.1 Introduction -- 7.2 Burmese Grape Fruit and Fruit Waste -- 7.3 Nutraceuticals and Functional Activities of Burmese Grape Waste -- 7.3.1 Seed -- 7.3.1.1 Source of Fatty Acids -- 7.3.1.2 Source of Polysaccharides -- 7.3.1.3 Phytochemicals and Functional Properties -- 7.3.2 Peel -- 7.3.2.1 Nutrients in Burmese Grape Peel -- 7.3.2.2 Source of Polysaccharides -- 7.3.2.3 Phytochemicals and Functional Properties -- 7.4 Burmese Grape Tree Parts -- 7.4.1 Leaves -- 7.4.1.1 Phytochemicals and Functional Properties.
7.4.2 Stem Bark -- 7.5 Conclusion -- List of Abbreviations -- References -- Chapter 8 Citrus -- 8.1 Introduction -- 8.2 Phytochemicals in Citrus Waste -- 8.3 Principal Non-Conventional Technologies to Extract High Biological Value Compounds from Citrus Waste -- 8.3.1 Ultrasound-Assisted Extraction (UAE) -- 8.3.2 Microwave-Assisted Extraction (MAE) -- 8.3.3 Supercritical Fluid Extraction -- 8.3.4 Pressurized Water Extraction (PWE) -- 8.3.5 Pulsed Electric Field -- 8.3.6 High Hydrostatic Pressures -- 8.3.7 Enzyme-Assisted Extraction (EAE) -- 8.4 Citrus Waste and Its Utilization -- 8.4.1 Citrus Waste and Biofuel Production -- 8.4.2 Citrus Waste and Food Preservation Against -- 8.4.3 Citrus Waste and Bioactive Compounds -- 8.4.4 Citrus Waste and Food, Pharma, and Other Applications -- 8.5 Conclusion -- References -- Chapter 9 Dates -- 9.1 Introduction -- 9.1.1 Dates and Their Origin -- 9.1.2 Stages of Growth of Dates -- 9.1.3 Structure of Dates -- 9.2 Date Seeds -- 9.2.1 Sensory Properties of Date Seeds -- 9.3 Integrating Dates with Food for Developing Value-Added Recipes -- 9.4 Nutritional Benefits -- 9.4.1 Carbohydrates -- 9.4.2 Protein -- 9.4.3 Fat -- 9.4.4 Fiber -- 9.4.5 Vitamins -- 9.4.6 Minerals -- 9.5 Antioxidants and Phytochemicals in Dates -- 9.5.1 Phenols -- 9.5.2 Tocopherols and Tocotrienols -- 9.5.3 Flavonoids -- 9.5.4 Carotenoids -- 9.6 Health Benefits -- 9.7 Conclusion -- References -- Chapter 10 Ginger (Zingiber officinale) -- 10.1 Introduction -- 10.2 Ginger Varieties and Its Features -- 10.3 Nutritional and Phytochemical Components of Ginger -- 10.4 Processing of Ginger -- 10.4.1 Effect of Various Processing on the Functional Properties of Ginger -- 10.5 By-Products Generated from Ginger Processing -- 10.6 Nutraceutical Potential and Utilization of Ginger By-Products -- 10.6.1 Ginger Leaves -- 10.6.2 Ginger Stalk/Stem.
10.6.3 Ginger Peel -- 10.6.4 Ginger Pomace and Precipitate -- 10.7 Future Prospects -- References -- Chapter 11 Jackfruit -- 11.1 Introduction -- 11.2 Types of Jackfruit Waste and By-Products -- 11.3 Nutraceuticals and Functional Activities of Jackfruit Waste and By-Products -- 11.3.1 Jackfruit Seed -- 11.3.1.1 Nutrients -- 11.3.1.2 Phytochemicals and Functional Activities -- 11.3.1.3 Organic Acids -- 11.3.2 Jackfruit Flake -- 11.3.2.1 Nutrients -- 11.3.2.2 Phytochemicals and Functional Properties -- 11.3.2.3 Pectin -- 11.3.2.4 Organic Acids -- 11.3.3 Axis of Jackfruit -- 11.3.3.1 Fatty Acids -- 11.3.3.2 Phytochemicals and Functions -- 11.3.3.3 Pectin -- 11.3.4 Jackfruit Peel -- 11.3.4.1 Proximate Compounds -- 11.3.4.2 Phytochemicals and Their Functional Activities -- 11.3.4.3 Pectin -- 11.4 Parts of Jackfruit Tree -- 11.4.1 Phytochemicals and Functional Properties -- 11.5 Conclusion -- List of Abbreviations -- References -- Chapter 12 Development of Nutraceuticals from the Waste of Loquat -- 12.1 Introduction -- 12.2 Importance of Waste Material of Fruits -- 12.3 The Worldwide Growth Pattern of Loquat -- 12.4 Physiology and Biochemistry of Loquat -- 12.5 Use of Loquat Tree and Its Parts -- 12.6 Nutraceutical Properties -- Conclusion -- References -- Chapter 13 Mango -- 13.1 Introduction -- 13.2 Mango Peel -- 13.3 Nutritional Composition -- 13.4 Phytochemical Composition -- 13.5 Utilization of Mango Peel -- 13.6 Mango Kernel -- 13.7 Nutritional Composition of Mango Kernel -- 13.8 Phytochemical Composition of Mango Kernel -- 13.9 Utilization of Mango Kernel -- 13.10 Other By-Products of Mango Waste -- References -- Chapter 14 Melon -- 14.1 Introduction -- 14.2 History, Origin and Domestication -- 14.3 Diversity and Botanical Groups of Melon -- 14.4 Consumer Preference for Melon -- 14.5 Nutritional Importance, Health Benefits and Culinary Uses of Melon.
14.6 Fruits and Vegetables Wastage.
Record Nr. UNINA-9911019594903321
Tomer Vidisha  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui