top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
6G Urban Innovation : AI and Digital Twin for Next-Gen Sustainable Cities
6G Urban Innovation : AI and Digital Twin for Next-Gen Sustainable Cities
Autore Taneja Ashu
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (238 pages)
Disciplina 621.38456
Altri autori (Persone) KumarAbhishek
Vishnudas LimkarSuresh
OuaissaMariya
OuaissaMariyam
Collana ISTE Invoiced Series
ISBN 1-394-41133-2
1-394-41131-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911028672003321
Taneja Ashu  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analyses for Retaining walls, Slope Stability and Landslides : Select Proceedings of 8th ICRAGEE 2024 / / edited by Rajib Sarkar, B.K. Maheshwari, Abhishek Kumar
Analyses for Retaining walls, Slope Stability and Landslides : Select Proceedings of 8th ICRAGEE 2024 / / edited by Rajib Sarkar, B.K. Maheshwari, Abhishek Kumar
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIV, 430 p. 254 illus., 218 illus. in color.)
Disciplina 624.151
Collana Lecture Notes in Civil Engineering
Soggetto topico Geotechnical engineering
Rock mechanics
Soil mechanics
Engineering geology
Geotechnical Engineering and Applied Earth Sciences
Soil and Rock Mechanics
Geoengineering
ISBN 981-9616-83-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Field and laboratory testing of soils for the estimation of dynamic soil properties -- Chapter 2: Latest findings on liquefaction of soils -- Chapter 3: Seismic slope stability and landslides -- Chapter 4: Seismic design of retaining walls, marine structures, and dams -- Chapter 5. Seismic design of shallow and deep foundations -- Chapter 6: Soil-structure interaction under dynamic loading -- Chapter 7: Engineering seismology, strong ground motions -- Chapter 8: Ground response analyses and local site effects -- Chapter 9: Seismic hazard analyses: zonation, microzonation, risk assessment -- Chapter 10:Ground improvement techniques for reduction of seismic hazard -- Chapter 11: Role of building codes in reduction of seismic risk -- Chapter 12: Wave propagation, engineering vibrations -- Chapter 13: Vibration problems of high-speed railways -- Chapter 14: Vibration absorption/isolation applications -- Chapter 15:Performance of constructed facilities in extreme events/case histories ofgeotechnical earthquake engineering -- Chapter 16. Reconnaissance reports of recent damaging earthquakes -- Chapter 17: GIS and remote sensing, AI/ ML applications for geo- hazards -- Chapter 18: Sensors and satellite technology for disaster management.Chapter 19. Seismic risk management and economics -- Chapter 20. Community preparedness and pre-earthquake disaster management -- Chapter 21. Innovative geotechnical applications in earthquake disaster management -- Chapter 22. Earthquake engineering education -- Chapter 23. Review of seismic design codes.
Record Nr. UNINA-9911007476503321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Biotribology in Biomedical Systems / / edited by Abhishek Kumar, Avinash Kumar, Ashwani Kumar
Applications of Biotribology in Biomedical Systems / / edited by Abhishek Kumar, Avinash Kumar, Ashwani Kumar
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (462 pages)
Disciplina 610.28
Altri autori (Persone) KumarAbhishek
KumarAvinash
KumarAshwani <1989->
Soggetto topico Biomedical engineering
Tribology
Corrosion and anti-corrosives
Coatings
Biomedical Engineering and Bioengineering
Corrosion
ISBN 9783031583278
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Biotribology: A Science of Surface Interaction -- Characterization of Hydrogel Properties in the Advancement of Biotribology -- Recent Advancements in Developing Nano-biosensors for Treating Inflammatory Diseases of Human: A Comprehensive Overview -- Biological Smart Materials for Cancer Treatment -- Tribological Measurements of Human Skin -- Tribological Hurdles in Biomedical Manufacturing: A Comprehensive Examination -- Navigating the Landscape: Cutting-edge Biomedical Manufacturing Techniques -- Animal Tribology -- Medical Devices Tribology -- Composites for Drug Eluting Devices: Emerging Biomedical Applications -- Biological Smart Biomaterials: Materials for Biomedical Applications -- Bioresorbable Composite for Orthopaedics and Drug Delivery Applications -- Wear and Friction Mechanism Study in Knee and Hip Rehabilitation: A Comprehensive Review -- Challenges and Perspective of Manufacturing Techniques in Biomedical Applications.
Record Nr. UNINA-9910869175703321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Computer Vision Through Artificial Intelligence
Applied Computer Vision Through Artificial Intelligence
Autore Sandhu Jasminder Kaur
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (501 pages)
Altri autori (Persone) KumarAbhishek
SahuRakesh
AhujaSachin
ISBN 1-394-27262-6
1-394-27261-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 An Overview of Medical Diagnostics through Artificial Intelligence-Powered Histopathological Imaging and Video Analysis -- 1.1 Introduction -- 1.1.1 A Focus on Digital Image and Video Analysis -- 1.1.2 Overview of Research Article -- 1.1.2.1 Comparison Between Different Techniques/Comparative Analysis Among the Techniques Available -- 1.1.2.2 Overview of Data Preprocessing and Meta-Heuristic Algorithms -- 1.1.3 The Organizational of the Research Article -- 1.2 Background -- 1.2.1 Difficulties with Feature Selection -- 1.3 Preliminaries -- 1.3.1 Selection of Features (FS) -- 1.3.2 Classification -- 1.3.2.1 Support Vector Machine -- 1.3.2.2 Naïve Bayes -- 1.3.2.3 ANN -- 1.3.3 Meta-Heuristic Algorithms in FS -- 1.3.3.1 Genetic Algorithm -- 1.3.3.2 Cuckoo Search Optimization -- 1.3.3.3 BAT Algorithm -- 1.3.3.4 Grey Wolf Optimizer -- 1.3.3.5 Harris Hawk Optimization -- 1.3.3.6 Transition from Exploration to Exploitation -- 1.4 Experimental Results -- 1.4.1 Challenges in the Application of a Metaheuristic Algorithm for Classification and Prediction of Medical Disease -- 1.4.2 Summary of the Review -- 1.5 Conclusion -- References -- Chapter 2 Generative Adversarial Networks: Theory and Application in Synthesis -- 2.1 Introduction -- 2.2 Ideologies of GAN -- 2.3 Architecture of GAN -- 2.4 Applications of GAN -- 2.4.1 Image Processing and Computer Vision -- 2.4.2 Healthcare and Medical Imaging -- 2.4.3 Natural Language Processing (NLP) -- 2.4.4 Video and Animation -- 2.4.5 Gaming and Entertainment -- 2.4.6 Cybersecurity and Anomaly Detection -- 2.4.7 Fashion and Retail -- 2.4.8 Art and Creativity -- 2.5 Conclusion -- References -- Chapter 3 From Pixels to Predictions: Deep Learning for Glaucoma Detection -- 3.1 Introduction -- 3.1.1 Glaucoma.
3.1.2 Detection of Glaucoma -- 3.1.3 Deep Learning -- 3.1.4 Glaucoma Detection Using Deep Learning -- 3.2 Literature Review -- 3.2.1 Glaucoma Classification -- 3.2.2 Glaucoma Detecting -- 3.3 Problem Statement -- 3.4 Hybrid Approach for Glaucoma Detection -- 3.5 Result and Discussion -- 3.5.1 Confusion Matrix has been Obtained During Testing that is Shown Below for 4 Models -- 3.6 Conclusion -- 3.7 Future Scope -- References -- Chapter 4 Advancements in Computer Vision for Object Detection and Recognition using DenseNet Deep Learning Model -- 4.1 Introduction -- 4.2 Literature Survey -- 4.2.1 Application of Principles -- 4.3 Proposed System -- 4.4 Results and Discussion -- 4.5 Conclusion -- References -- Chapter 5 Deep Learning-Based Detection of Cyber Extortion -- 5.1 Introduction -- 5.2 Related Works -- 5.3 Existing System -- 5.4 Proposed System -- 5.5 System Architecture -- 5.6 Methodology -- 5.6.1 Data Collection and Preprocessing -- 5.6.2 Feature Extraction -- 5.6.3 Voice Processing -- 5.6.4 Model Architecture -- 5.6.4.1 Text Vectorization Layer -- 5.6.4.2 Embedding Layer -- 5.6.4.3 Bidirectional LSTM Layer -- 5.6.4.4 Dense Layers -- 5.6.4.5 Dropout Regularization -- 5.6.5 Evaluation -- 5.6.5.1 Precision -- 5.6.5.2 Recall -- 5.6.5.3 F1 Score -- 5.6.5.4 Accuracy -- 5.7 Results and Discussion -- 5.8 Conclusion -- 5.9 Future Work -- References -- Chapter 6 GANs Unleashed: From Theory to Synthetic Realities -- 6.1 Introduction -- 6.2 Related Works -- 6.2.1 Accurate Representation of the Density -- 6.2.2 Classification/Regression -- 6.2.3 Computer Algorithms for Image Synthesis -- 6.2.4 Computer Algorithms Synthesize Pictures -- 6.3 Limitations that are Enforced by GAN -- 6.4 Conclusion -- References -- Chapter 7 RFID and Computer Vision-Enhanced Automotive Authentication Verification System -- 7.1 Introduction -- 7.2 Literature Survey.
7.3 Proposed System -- 7.4 Working -- 7.5 Block Diagram -- 7.6 Hardware Components -- 7.7 Result -- 7.8 Conclusion -- Bibliography -- Chapter 8 Synergizing Ensemble Learning Techniques for Robust Emotion Detection using EEG Signals -- 8.1 Introduction -- 8.1.1 Overview of EEG-Based Emotion Detection -- 8.1.2 Motivation for Using Ensemble Learning -- 8.2 Ensemble Learning Techniques -- 8.2.1 Random Forest Classifier -- 8.2.2 AdaBoost Classifier -- 8.2.3 Gradient Boosting Classifier -- 8.2.4 CatBoost Classifier -- 8.2.5 XGBoost Classifier -- 8.2.6 Extra Trees Classifier -- 8.3 Methodology -- 8.3.1 Data Collection and Preprocessing -- 8.3.2 Implementation Details -- 8.4 Experimental Results -- 8.4.1 Impact of Different Ensemble Techniques on Emotion Detection Accuracy -- 8.4.2 Robustness and Reliability -- 8.5 Discussion -- 8.5.1 Advantages of Ensemble Methods in EEG Emotion Detection -- 8.5.2 Future Directions -- 8.6 Conclusion -- Chapter 9 Understanding the Unseen: Explainability in Deep Learning for Computer Vision -- 9.1 Introduction -- 9.1.1 An Overview of the Success of Deep Learning in Computer Vision -- 9.1.2 The Importance of Interpretability and Explainability -- 9.2 The Need for Interpretation in Computer Vision -- 9.3 Understanding Interpretability in Deep Learning -- 9.4 Visualization Techniques -- 9.5 Maps of the Headland -- 9.6 Model Simplification -- 9.7 Meaning of Function -- 9.8 Feature Importance -- 9.9 Methods Based on Prototypes -- 9.10 Challenges and Future Directions -- 9.11 Conclusion -- 9.12 Future Vision -- References -- Chapter 10 Prefatory Study on Landslide Susceptibility Modeling Based on Binary Random Forest Classifier -- 10.1 Introduction -- 10.2 Materials and Methodology -- 10.2.1 Region of Study -- 10.2.2 Preparation of Dataset -- 10.2.3 Random Forest -- 10.2.4 Evaluation of Landslide Susceptibility Model.
10.3 Result Analysis -- 10.3.1 10-Fold Cross-Validation -- 10.3.2 Feature Selection -- 10.3.3 LSM by Binary RF Model -- 10.4 Conclusion -- References -- Chapter 11 Improving Digital Interactions using Augmented Reality and Computer Vision -- 11.1 Introduction -- 11.2 Literature Survey -- 11.3 Methodology -- 11.4 Results -- 11.5 Conclusion and Future Scope -- References -- Chapter 12 The Evolutionary Dynamics of Machine Learning and Deep Learning Architectures in Computer Vision -- 12.1 Introduction to Computer Vision and Its Evolution -- 12.2 Foundations of Machine Learning in Computer Vision -- 12.3 Rise of Deep Learning in Computer Vision -- 12.4 Key Architectures and Techniques in Deep Learning for Computer Vision -- 12.5 CNN Architectures -- 12.5.1 Inception -- 12.5.2 ResNet (Residual Network) -- 12.5.3 DenseNet -- 12.6 Transfer Learning and Fine-Tuning -- 12.7 Object Detection, Image Segmentation, and Image Classification -- 12.7.1 Visual Geometry Group (VGG) -- 12.7.2 MobileNet -- 12.7.3 Transfer Learning and Fine-Tuning -- 12.7.4 Mask R-CNN -- 12.7.5 DeepLab -- 12.7.6 EfficientNet -- 12.8 Evolution of Image Processing Models -- 12.8.1 Progression of Deep Learning (DL) Architectures -- 12.8.2 Recent Advancements in Computer Vision Research -- 12.8.3 Integration of Multimodal Learning -- 12.8.4 Continual Learning and Lifelong Adaptation -- 12.8.5 Ethical Considerations and Responsible AI -- 12.8.6 Robustness and Adversarial Defense -- 12.8.7 Interpretability and Explainability -- 12.8.8 Domain-Specific Adaptation and Transfer Learning -- 12.8.9 Human-Centric Vision Systems -- 12.9 Challenges and Future Directions -- 12.9.1 Challenges -- 12.9.1.1 Interpretability -- 12.9.1.2 Robustness -- 12.9.1.3 Scalability -- 12.9.1.4 Interpretability -- 12.9.1.5 Robustness -- 12.9.1.6 Scalability -- 12.9.1.7 Interpretability -- 12.9.1.8 Robustness.
12.9.1.9 Scalability -- 12.9.2 Future Directions -- 12.9.2.1 Multimodal Learning -- 12.9.2.2 Self-Supervised Learning -- 12.9.2.3 Incorporating Domain Knowledge -- 12.9.2.4 Multimodal Learning -- 12.9.2.5 Self-Supervised Learning -- 12.9.2.6 Incorporating Domain Knowledge -- 12.9.2.7 Multimodal Learning -- 12.9.2.8 Self-Supervised Learning -- 12.9.2.9 Incorporating Domain Knowledge -- 12.10 Applications and Impacts -- 12.10.1 Autonomous Driving -- 12.10.2 Medical Imaging -- 12.10.3 Surveillance and Security -- 12.10.4 Societal Impacts -- 12.10.5 Retail and E-Commerce -- 12.10.6 Agriculture -- 12.10.7 Art and Creative Industries -- 12.10.8 Accessibility -- 12.10.9 Environmental Monitoring -- 12.10.10 Industrial Quality Control -- 12.10.11 Augmented Reality (AR) and Virtual Reality (VR) -- 12.10.12 Smart Cities -- 12.10.13 Education -- 12.10.14 Humanitarian Aid and Disaster Response -- 12.11 Conclusion -- References -- Chapter 13 Real-World Applications: Transforming Industries with Computer Vision -- 13.1 Introduction -- 13.1.1 Definition and Brief History of Computer Vision -- 13.1.2 Importance of Computer Vision in Modern Industries -- 13.1.3 Purpose and Structure of the Paper -- 13.2 Healthcare -- 13.2.1 Medical Imaging Analysis -- 13.2.1.1 Use in Early Disease Detection (e.g., Cancer, Diabetic Retinopathy) -- 13.2.1.2 Case Studies and Statistics on Improved Diagnostic Accuracy -- 13.2.2 Robotic Surgery -- 13.2.2.1 Enhancements in Precision and Patient Outcomes -- 13.2.3 Patient Monitoring -- 13.2.3.1 Continuous Monitoring Systems and their Benefits -- 13.3 Manufacturing -- 13.3.1 Quality Control and Defect Detection -- 13.3.1.1 Automated Visual Inspection Systems -- 13.3.1.2 Case Studies on Efficiency and Waste Reduction -- 13.3.2 Predictive Maintenance -- 13.3.2.1 Early Detection of Machinery Issues.
13.3.2.2 Impact on Reducing Downtime and Extending Machinery Lifespan.
Record Nr. UNINA-9911034577503321
Sandhu Jasminder Kaur  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-Inspired Optimization for Medical Data Mining
Bio-Inspired Optimization for Medical Data Mining
Autore Srivastava Sumit
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (334 pages)
Disciplina 610.285
Altri autori (Persone) AnandAbhineet
KumarAbhishek
SainiBhavna
RathorePramod Singh
Soggetto topico Medical informatics - Data processing
Data mining
ISBN 9781394214211
1394214219
9781394214204
1394214200
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Bioinspired Algorithms: Opportunities and Challenges -- 1.1 Introduction -- 1.1.1 Definition and Significance of Bioinspired Algorithms -- 1.1.2 Overview of the Chapter -- 1.2 Bioinspired Principles and Algorithms -- 1.2.1 Evolutionary Algorithms -- 1.2.2 Swarm Intelligence Algorithms -- 1.2.3 Artificial Neural Networks -- 1.2.4 Other Bioinspired Algorithms -- 1.3 Opportunities of Bioinspired Algorithms -- 1.3.1 Solving Complex Optimization Problems -- 1.3.2 Robustness in Dealing With Uncertainty and Noise -- 1.3.3 Parallel and Distributed Computing -- 1.3.4 Application Areas and Success Stories -- 1.4 Challenges of Bioinspired Algorithms -- 1.4.1 Parameter Tuning and Algorithm Configuration -- 1.4.2 Lack of Theoretical Analysis and Understanding -- 1.4.3 Risk of Premature Convergence -- 1.4.4 Computational Cost for Large-Scale Problems -- 1.4.5 Ethical Considerations and Limitations -- 1.5 Prominent Bioinspired Algorithms -- 1.5.1 Genetic Algorithms -- 1.5.2 Particle Swarm Optimization -- 1.5.3 Ant Colony Optimization -- 1.5.4 Artificial Neural Networks -- 1.6 Applications of Bioinspired Algorithms -- 1.6.1 Optimization Problems -- 1.6.2 Pattern Recognition and Machine Learning -- 1.6.3 Swarm Robotics -- 1.6.4 Other Domains -- 1.7 Future Research Directions -- 1.7.1 Improving Efficiency and Scalability -- 1.7.2 Enhancing Interpretability and Explainability -- 1.7.3 Integration With Other Computational Techniques -- 1.7.4 Addressing Ethical Concerns -- 1.8 Conclusion -- 1.8.1 Summary of Key Points -- 1.8.2 Implications and Future Prospects of Bioinspired Algorithms -- References -- Chapter 2 Evaluation of Phytochemical Screening and In Vitro Antiurolithiatic Activity of Myristica fragrans by Titrimetry Method Using Machine Learning -- 2.1 Introduction.
2.2 Methodology -- 2.2.1 Collection of Plant Material -- 2.2.2 Qualitative Analysis of Phytochemicals -- 2.2.3 Study of In Vitro Antiurolithiatic Activity Using Titrimetry Method -- 2.2.3.1 Preparation of Calcium Oxalate -- 2.2.3.2 Preparation of Semipermeable Membrane From Eggs -- 2.2.3.3 In Vitro Antiurolithiatic Test Using Titrimetry Method -- 2.3 Result and Discussion -- 2.3.1 In Vitro Antiurolithiatic Activity Test -- 2.3.2 Analysis of Dissolved Calcium Oxalate -- 2.4 Conclusion -- References -- Chapter 3 Parkinson's Disease Detection Using Voice and Speech- Systematic Literature Review -- 3.1 Introduction -- 3.2 Research Questions -- 3.3 Method -- 3.3.1 Search Strategy -- 3.3.2 Inclusion Criteria -- 3.3.3 Subprocesses Involved in PD Detection Process -- 3.3.4 Data Sets -- 3.3.4.1 Parkinson's Data Set-UCI Machine Learning Dataset -- 3.3.4.2 PC-GITA Dataset -- 3.3.4.3 mPower Dataset -- 3.3.4.4 Mobile Device Voice Recordings (MDVR-KCL) Dataset -- 3.3.4.5 Italian Parkinson's Voice and Speech (IPVS) Dataset -- 3.3.4.6 Parkinson Speech Dataset With Multiple Types of Sound Recordings Dataset -- 3.3.4.7 Parkinson's Telemonitoring Dataset -- 3.4 Algorithms -- 3.5 Features -- 3.5.1 Acoustic Features -- 3.5.1.1 Jitter (Local, Absolute) -- 3.5.1.2 Jitter (Local) -- 3.5.1.3 Jitter (rap) -- 3.5.1.4 Jitter (ppq5) -- 3.5.1.5 Shimmer (Local) -- 3.5.1.6 Shimmer (local, dB) -- 3.5.1.7 Shimmer (apq3) -- 3.5.1.8 Shimmer (apq5) -- 3.5.2 Spectogram-Based Methods -- 3.5.2.1 MFCC -- 3.6 Conclusion -- References -- Chapter 4 Tumor Detection and Classification -- 4.1 Introduction -- 4.2 Methods Used for Detection of Tumors -- 4.3 Methods Used for Classification of Tumours -- 4.3.1 Segmentation -- 4.3.2 Region Growing Method -- 4.3.3 Seeded Region Growing Method -- 4.3.4 Unseeded Region Growing Method -- 4.3.5 .-Connected Method -- 4.3.6 Threshold Based Method.
4.3.7 K-Means Method -- 4.3.8 Watershed Method -- 4.3.9 Comparison of Different Segmentation Techniques Based on the Advantages and Disadvantages -- 4.3.10 Comparison of Different Segmentation Techniques Based on Accuracy -- 4.3.11 Comparison of Region Based and Threshold Based Segmentation Techniques Based on Different Parameters -- 4.4 Machine Learning -- 4.4.1 Supervised Learning -- 4.4.2 Unsupervised Learning -- 4.4.3 Reinforcement Learning -- 4.4.4 K-Nearest Neighbour (KNN) -- 4.4.5 Support Vector Machine (SVM) -- 4.4.6 Random Forest -- 4.5 Deep Learning (DL) -- 4.5.1 Convolutional Neural Networks (CNN) -- 4.5.1.1 Convolution Layer -- 4.5.1.2 Pooling Layer -- 4.5.1.3 Architecture of CNN -- 4.5.1.4 Comparison of Different Variations of CNN Techniques -- 4.5.2 Long Short-Term Memory (LSTM) -- 4.5.3 Artificial Neural Network (ANN) -- 4.5.4 Accuracy of Different Models Discussed Above -- 4.5.5 Accuracy of Other Different Techniques Being Used -- 4.6 Performance Metrics -- 4.6.1 Accuracy -- 4.6.2 Precision -- 4.6.3 Recall -- 4.6.4 Specificity -- 4.6.5 F1-Measure -- 4.7 Method Wise Trend of Using Techniques for Detection of Brain Tumor -- 4.8 Conclusion -- References -- Chapter 5 Advancements in Tumor Detection and Classification -- 5.1 Introduction -- 5.2 Imaging Techniques Used in Tumor Detection and Classification -- 5.2.1 X-Ray -- 5.2.2 CT Scan -- 5.2.3 MRI -- 5.2.4 Ultrasound -- 5.3 Molecular Biology Techniques -- 5.3.1 PCR -- 5.3.2 FISH -- 5.3.3 Next-Generation Sequencing -- 5.3.4 Western Blotting -- 5.4 Machine Learning and Artificial Intelligence -- 5.5 Tumor Classification -- 5.5.1 TNM Staging System -- 5.5.2 Histological Grading -- 5.5.3 Molecular Subtyping -- 5.6 Challenges and Future Directions -- References -- Chapter 6 Classification of Brain Tumor Using Machine Learning Techniques: A Comparative Study -- 6.1 Introduction.
6.2 Related Work -- 6.3 Datasets -- 6.4 Experimental Setup -- 6.5 Results and Discussion -- 6.5.1 Evaluation Metrics -- 6.6 Conclusion -- 6.6.1 Significance of the Study -- References -- Chapter 7 Exploring the Potential of Dingo Optimizer: A Promising New Metaheuristic Approach -- 7.1 Introduction -- 7.2 Architecture of Dingo Optimizer -- 7.3 Initialization Process -- 7.3.1 Population Size -- 7.3.2 Dingo Population Initialization -- 7.3.3 Fitness Assessment -- 7.3.4 Best Dingo -- 7.3.5 Recordkeeping -- 7.4 Iteration Phase -- 7.6 Other Optimization Techniques -- 7.7 Conclusion -- References -- Chapter 8 Bioinspired Genetic Algorithm in Medical Applications -- 8.1 Introduction -- 8.2 The Genetic Algorithm -- 8.3 Radiology -- 8.4 Oncology -- 8.5 Endocrinology -- 8.6 Obstetrics and Gynecology -- 8.7 Pediatrics -- 8.8 Surgery -- 8.9 Infectious Diseases -- 8.10 Radiotherapy -- 8.11 Rehabilitation Medicine -- 8.12 Neurology -- 8.13 Health Care Management -- 8.14 Conclusion -- References -- Chapter 9 Artificial Immune System Algorithms for Optimizing Nanoparticle Design in Targeted Drug Delivery -- 9.1 Introduction -- 9.2 Artificial Immune Cells -- 9.3 The Artificial Immune System Architecture -- References -- Chapter 10 Diabetic Retinopathy Detection by Retinal Blood Vessel Segmentation and Classification Using Ensemble Model -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 Proposed System -- 10.4 Conclusion and Future Scope -- References -- Chapter 11 Diabetes Prognosis Model Using Various Machine Learning Techniques -- 11.1 Introduction -- 11.1.1 Disease Identification -- 11.1.2 Data, Information, and Knowledge -- 11.1.3 Knowledge Discovery in Databases -- 11.1.4 Predictive Analytics -- 11.1.5 Supervised Learning and Machine Learning -- 11.1.6 Predictive Models -- 11.1.7 Data Validation and Cleaning -- 11.1.8 Discretization.
11.2 Literature Review -- 11.2.1 Neural Networks -- 11.2.2 Trees -- 11.2.3 K-Nearest Neighbors -- 11.3 Proposed Model -- 11.3.1 Predictive Models in Health -- 11.4 Experimental Results and Discussion -- 11.4.1 Prediction of Diabetes with Artificial Neural Networks Supervised Learning Algorithms -- 11.4.2 Improving the Prediction Ratio of Diabetes Diagnoses Using Fuzzy Logic and Neural Networks -- 11.4.3 ARIC: Type 2 Diabetes Risk Predictive Model -- 11.4.4 Evaluation of Neural Network Algorithms for Prediction Models of Type 2 Diabetes -- 11.4.5 Reliable and Objective Recommendation System for the Diagnosis of Chronic Diseases -- 11.5 Conclusion -- References -- Chapter 12 Diagnosis of Neurological Disease Using Bioinspired Algorithms -- 12.1 Introduction -- 12.1.1 Neurological Diseases -- 12.1.2 Introduction to Bioinspired Algorithms -- 12.1.3 Types of Bioinspired Algorithms Commonly Used in Healthcare -- 12.1.4 Advantages and Limitations of Bioinspired Algorithms -- 12.1.5 Limitations -- 12.1.6 Applications of Bioinspired Algorithms in Healthcare -- 12.1.7 Benefits of Bioinspired Algorithms in Healthcare Over Traditional Approaches -- 12.2 Neurological Disease Diagnosis -- 12.2.1 Bioinspired Algorithms for Neurological Disease Diagnosis -- 12.2.2 Neural Networks in Neurological Disease Diagnosis -- 12.2.2.1 How NNs Can Be Trained Using Bioinspired Optimization Techniques -- 12.2.3 Other Bioinspired Algorithms in Neurological Disease Diagnosis -- 12.3 Challenges and Future Directions -- 12.4 Conclusion -- References -- Chapter 13 Optimizing Artificial Neural-Network Using Genetic Algorithm -- 13.1 Introduction -- 13.1.1 ANN -- 13.1.2 Genetic Algorithm -- 13.2 Methodology -- 13.2.1 Mathematical Working -- 13.3 Brief Study on Existing Implementations -- 13.3.1 Using Different Types of ANNs -- 13.3.2 Using MLPs.
13.4 Comparative Study on Different Implementations.
Record Nr. UNINA-9911020077403321
Srivastava Sumit  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain Security in Cloud Computing [[electronic resource] /] / edited by K.M. Baalamurugan, S. Rakesh Kumar, Abhishek Kumar, Vishal Kumar, Sanjeevikumar Padmanaban
Blockchain Security in Cloud Computing [[electronic resource] /] / edited by K.M. Baalamurugan, S. Rakesh Kumar, Abhishek Kumar, Vishal Kumar, Sanjeevikumar Padmanaban
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (XIII, 317 p. 111 illus., 90 illus. in color.)
Disciplina 621.382
Collana EAI/Springer Innovations in Communication and Computing
Soggetto topico Electrical engineering
Computational intelligence
Computer security
Communications Engineering, Networks
Computational Intelligence
Systems and Data Security
Privacy
Soggetto genere / forma Electronic books.
ISBN 3-030-70501-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Cloud Security -- Block Chain -- Block Chain Cloud Paradigm -- Block Chain Security -- Blockchain for Cloud -- Block chain-based cloud data storage security -- Clustering using Blockchain for cloud -- Cloud Assisted Secure Health System using blockchain -- Next Generation AI&ML using Blockchain -- Cloud Key Management for Secure Connection -- Computational Efficiency of Blockchain on cloud paradigm -- Conclusion.
Record Nr. UNINA-9910497110003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain, Artificial Intelligence, and the Internet of Things : Possibilities and Opportunities
Blockchain, Artificial Intelligence, and the Internet of Things : Possibilities and Opportunities
Autore Raj Pethuru
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (218 pages)
Altri autori (Persone) DubeyAshutosh Kumar
KumarAbhishek
RathorePramod Singh
Collana EAI/Springer Innovations in Communication and Computing Ser.
Soggetto genere / forma Electronic books.
ISBN 9783030776374
9783030776367
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910510565503321
Raj Pethuru  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain, artificial intelligence, and the Internet of things : possibilities and opportunities / / Pethuru Raj [and three others] editors
Blockchain, artificial intelligence, and the Internet of things : possibilities and opportunities / / Pethuru Raj [and three others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (218 pages)
Disciplina 004.678
Collana EAI/Springer Innovations in Communication and Computing
Soggetto topico Internet of things
Blockchains (Databases)
ISBN 3-030-77637-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910523909503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Intelligence : Theory and Applications
Computational Intelligence : Theory and Applications
Autore Kumar T. Ananth
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (407 pages)
Disciplina 006.3
Altri autori (Persone) JulieE. Golden
BurugaddaVenkata Raghuveer
KumarAbhishek
KumarPuneet
Soggetto topico Computational intelligence
Artificial intelligence
ISBN 9781394214259
1394214251
9781394214235
1394214235
9781394214242
1394214243
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Chapter 1 Computational Intelligence Theory: An Orientation Technique -- 1.1 Computational Intelligence -- 1.2 Application Fields for Computational Intelligence -- 1.2.1 Neural Networks -- 1.2.1.1 Classification -- 1.2.1.2 Clustering or Compression -- 1.2.1.3 Generation of Sequences or Patterns -- 1.2.1.4 Control Systems -- 1.2.1.5 Evolutionary Computation -- 1.2.2 Fuzzy Logic -- 1.2.2.1 Fuzzy Control Systems -- 1.2.2.2 Fuzzy Systems -- 1.2.2.3 Behavioral Motivations for Fuzzy Logic -- 1.3 Computational Intelligence Paradigms -- 1.3.1 Artificial Neural Networks -- 1.3.2 Evolutionary Computation (EC) -- 1.3.3 Optimization Method -- 1.3.3.1 Optimization -- 1.4 Architecture Assortment -- 1.4.1 Swarm Intelligence -- 1.4.2 Artificial Immune Systems -- 1.5 Myths About Computational Intelligence -- 1.6 Supervised Learning in Computational Intelligence -- 1.6.1 Performance Measures
Record Nr. UNINA-9911019391703321
Kumar T. Ananth  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning and Its Applications Using Python
Deep Learning and Its Applications Using Python
Autore Basha Niha Kamal
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (255 pages)
Altri autori (Persone) Bhatia KhanSurbhi
KumarAbhishek
MashatArwa
ISBN 1-394-16779-2
1-394-16778-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830198303321
Basha Niha Kamal  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui