Curriculum in International Contexts : Understanding Colonial, Ideological, and Neoliberal Influences / / by Ashwani Kumar
| Curriculum in International Contexts : Understanding Colonial, Ideological, and Neoliberal Influences / / by Ashwani Kumar |
| Autore | Kumar Ashwani |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Palgrave Macmillan, , 2019 |
| Descrizione fisica | 1 online resource (301 pages) |
| Disciplina |
335.43
375.001 |
| Collana | Curriculum Studies Worldwide |
| Soggetto topico |
Education - Curricula
Imperialism Education - History International education Comparative education Curriculum Studies Imperialism and Colonialism History of Education International and Comparative Education |
| ISBN |
9783030019839
3030019837 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Curriculum Studies in South Africa: Colonialism, Constructivism, and Outcomes-Based Education -- Chapter 3. Curriculum Studies in Brazil: Marxism, Postmodernism, and Multiculturalism -- Chapter 4. Curriculum Studies in Mexico: Technical Rationality, Curriculum Communities, and Neoliberal Globalization -- Chapter 5. Curriculum As a Process of Conditioning in Asia: Ideology, Politics, and Religion -- Chapter 6. Indian Social Studies Curriculum in Transition: Effects of a Paradigm Shift in Curriculum Discourse -- Chapter 7. Postmodern Turn in North American Social Studies Education: Considering Identities, Contexts, and Discourses -- Chapter 8. The Menace of Neoliberal Education Reforms: Where Capitalism, Behaviorism, and Positivism Meet. |
| Record Nr. | UNINA-9910337758103321 |
Kumar Ashwani
|
||
| Cham : , : Springer International Publishing : , : Imprint : Palgrave Macmillan, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Heat Transfer Enhancement Techniques : Thermal Performance, Optimization and Applications
| Heat Transfer Enhancement Techniques : Thermal Performance, Optimization and Applications |
| Autore | Kumar Ashwani |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (455 pages) |
| Disciplina | 621.4022 |
| Altri autori (Persone) |
DuttNitesh
AwasthiMukesh Kumar |
| Soggetto topico |
Heat engineering
Energy conservation |
| ISBN |
9781394270996
1394270992 9781394270972 1394270976 9781394270989 1394270984 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Aim and Scope -- Preface -- Acknowledgement -- Chapter 1 Recent Innovation in Heat Transfer Enhancement Techniques -- 1.1 Introduction -- 1.1.1 Industrial Application of Heat Transfer Enhancement Techniques -- 1.1.2 Standards and Regulations -- 1.2 Important Heat Transfer Enhancement Techniques and Their Effect -- 1.2.1 Effect of Fins and Extended Surfaces -- 1.2.2 Effect of Phase Change Materials (PCMs) -- 1.2.3 Effect of Heat Exchangers -- 1.2.4 Effect of Microchannels -- 1.2.5 Effect of Nanofluids -- 1.2.5.1 Analytical Approaches to Understanding Physical Characteristics of Nanofluids -- 1.2.6 Effect of Porous Media -- 1.2.6.1 Effect of Porosity -- 1.2.7 Effect of Jet Impingement -- 1.2.8 Effect of Heat Pipes -- 1.2.9 Effect of Vortex Generators -- 1.2.10 Effect of Ribbed Surfaces -- 1.2.11 Effect of Artificial Roughness-Based Turbulence -- 1.3 Numerical Analysis of Heat Transfer Problem -- 1.4 Conclusion -- References -- Chapter 2 Renewable Thermal Energy Systems: Sustainable, Modern and Reliable Energy -- 2.1 Introduction -- 2.2 Sustainable Development Goals (SDG) -- 2.3 Discussion -- References -- Chapter 3 HVAC System Efficiency Improvement Through Heat Transfer Enhancement Techniques -- 3.1 Introduction -- 3.2 Passive Heat Transfer Enhancement Techniques -- 3.2.1 Surfactants -- 3.2.2 Straight Microfins and Helical Microfins Tubes -- 3.2.3 Herringbone Tube -- 3.2.4 Twisted Tapes Insert Tube -- 3.2.5 Wired Coils -- 3.2.6 Dimpled Tubes -- 3.3 Electro-Passive Heat Transfer Enhancement Techniques -- 3.4 Conclusion -- References -- Chapter 4 Indoor Thermal Performance Enhancement of Sustainable Buildings -- List of Nomenclature -- 4.1 Introduction -- 4.2 Background of the Present Study -- 4.3 System Operation -- 4.4 Comparison of Desiccant Cooling with Traditional VCR Cooling.
4.5 Conclusions -- References -- Chapter 5 Eco-Friendly Paint for Sustainable Building Applications to Enhance Thermal Life Comfort -- 5.1 Introduction -- 5.2 Advantages of Vedic Plaster Over Conventional Plaster -- 5.3 Need for Vedic Paints -- 5.4 Types of Vedic Paints -- 5.5 Chemical Properties of Vedic Paints -- 5.6 Factors Increasing Comfort -- 5.7 Conclusion -- 5.8 Future Outlook -- References -- Chapter 6 Augmentation of Solar, Geothermal, and Earth-Air Heat Exchanger in Sustainable Buildings -- 6.1 Introduction -- 6.2 Current State of Renewable Energy Technologies -- 6.3 Solar Augmentation Strategies -- 6.3.1 Advanced Solar Technologies -- 6.3.2 Integration Into Building Design -- 6.3.3 Energy Efficiency and Environmental Impact -- 6.3.3.1 Energy Efficiency -- 6.3.3.2 Environmental Impact -- 6.4 Geothermal Energy in Building Systems -- 6.4.1 Harnessing Subsurface Heat -- 6.4.2 Applications in Space Heating, Cooling, and Power Generation -- 6.4.3 Innovative Geothermal Solutions -- 6.5 Earth-Air Heat Exchangers: Passive and Active Cooling -- 6.5.1 Principles and Functionality of Earth-Air Heat Exchangers (EAHE) -- 6.5.2 Benefits of Earth-Air Heat Exchanger (EAHE) Systems -- 6.5.3 Practical Implementation Techniques for Earth-Air Heat Exchangers (EAHE) -- 6.6 Combined Augmentation Strategies for Sustainable Buildings -- 6.6.1 Synergies Among Solar, Geothermal, and Earth-Air Systems -- 6.6.2 Challenges and Considerations in the Integration of Solar, Geothermal, and Earth-Air Systems for Sustainable Buildings -- 6.6.3 Future Trends and Prospects in the Integration of Solar, Geothermal, and Earth-Air Systems for Sustainable Buildings -- 6.7 Conclusion -- 6.7.1 Implications for Sustainable Building Practices -- 6.7.2 Recommendations for Future Research -- References. Chapter 7 CFD Numerical Investigation of Thermal Performance of Diamond Shape Micro Rectangular Heat Exchanger -- 7.1 Introduction -- 7.1.1 Heat Transfer Enhancement Method -- 7.1.2 Microchannel Heat Sink Method -- 7.1.3 Geometry of the Advanced Heat Sink Channel -- 7.2 Objective and Methodology -- 7.2.1 Methodology of the Microchannel Heat Exchanger Rectangular Channel -- 7.2.2 Methodology of Microchannel Diamond Fin Heat Sink -- 7.3 Parameters of Microchannel Fin Heat Sink -- 7.4 Governing Equation Used in Microchannel -- 7.4.1 K-e Model Used in Microchannel Heat Sink -- 7.4.2 Continuity Equation Applied -- 7.4.3 Momentum Equation -- 7.4.4 Energy Equation -- 7.4.5 Assumption for the Microchannel Heat Sink -- 7.5 Material Properties and Boundary Conditions -- 7.5.1 Thermophysical Properties of Copper-Inserted Diamond Fin Heat Sink -- 7.5.2 Boundary Conditions Applied in Diamond Microchannel -- 7.5.3 Mesh Generation of the Microchannel Heat Sink with Diamond Fin Shape -- 7.5.4 Validation for the Microplate Fin -- 7.6 Result and Discussion -- 7.6.1 The Smooth Microchannel and Dittus Boelter Equation -- 7.6.2 Smooth Microchannel and Blasius Friction Equation -- 7.6.3 Results and Effects of Microchannel with Diamond Fin Heat Sink -- 7.6.4 Results and Effects of the Velocity Contour -- 7.6.5 Results and Effects of the Temperature Contour -- 7.6.6 Effects of Inserted Diamond Fin with Reynolds Number -- 7.6.7 Friction Factor in the Roughened Microchannel Heat Sink -- 7.7 Thermal Hydraulic Efficiency of Diamond Shape Heat Exchanger Sink -- 7.8 Conclusion -- References -- Chapter 8 Particle Swarm Optimization Technique for Determining Optimal Process Parameters for Counter Flow Double Pipe Heat Exchanger -- Nomenclature -- Abbreviations -- 8.1 Introduction -- 8.1.1 Need for Optimization in Heat Exchangers -- 8.2 Experimental Setup -- 8.2.1 Data Reduction. 8.3 Mathematical Model -- 8.3.1 Formulation of Objective Function -- 8.3.2 Process Parameters -- 8.3.2.1 Hot Fluid Outlet Temperature -- 8.3.2.2 Mass Flow Rate of Hot Fluid -- 8.3.2.3 Cold Fluid Outlet Temperature -- 8.3.2.4 Mass Flow Rate of Cold Fluid -- 8.4 Implementation of Multi-Objective Type Optimization Technique [MOTOT] -- 8.4.1 Particle Swarm Optimization -- 8.4.1.1 Condition 1 -- 8.4.1.2 Condition 2 -- 8.4.2 Merits of PSO -- 8.4.3 Algorithm -- 8.4.4 Parameters of PSO -- 8.4.5 Numerical Illustration of PSO -- 8.4.5.1 Calculation of mh -- 8.4.5.2 Calculation of mc -- 8.4.5.3 Calculation of T2 -- 8.4.5.4 Calculation of t2 -- 8.4.5.5 Calculation of Objective Function -- 8.4.5.6 Calculation of Particle Best Value -- 8.4.5.7 Calculation of Global Best Value -- 8.4.6 Computational Result of PSO -- 8.5 Confirmation Experiments -- 8.6 Results and Discussion -- 8.6.1 Initial Experiments -- 8.6.2 The PSO Analysis -- 8.6.3 The Validation Experiments -- 8.7 Conclusions -- References -- Chapter 9 Application of Geothermal Energy-Based Earth-Air Heat Exchanger in Sustainable Buildings -- 9.1 Introduction to Sustainable Building -- 9.2 System Approach for Complex System Study -- 9.3 Earth-to-Air Heat Exchanger for Sustainable Buildings -- 9.4 EAHE Performance Evaluation: Numerical Method -- 9.5 Discussion -- References -- Chapter 10 Numerical Study of Solar Air Heater with Semi-Cylindrical Tube Roughness -- Nomenclature -- Abbreviations -- 10.1 Introduction -- 10.2 Numerical Simulation -- 10.2.1 Preprocessing -- 10.2.2 Processing -- 10.2.3 Postprocessing -- 10.2.4 Data Reduction -- 10.3 Validation -- 10.4 Results and Discussions -- 10.4.1 Effect of Roughness Height Ratio (er/H) -- 10.4.2 Effect of Tube Pitch Ratio (P/H) -- 10.4.3 Thermohydraulic Performance (THP) -- 10.5 Conclusions -- Declaration of Competing Interest -- Data Availability. Acknowledgement -- References -- Chapter 11 Design and Analysis of Solar Tracking System for PV Thermal Performance Enhancement -- 11.1 Introduction -- 11.2 Background and Motivation -- 11.2.1 Types of Solar Tracking System -- 11.3 Fundamentals of Arduino-Based Solar Tracking System -- 11.3.1 Components of a Sun Tracking Solar Panel System -- 11.3.2 Working Procedure of Solar Tracking System -- 11.3.3 Development of Model -- 11.4 Benefits and Challenges -- 11.5 Conclusions -- References -- Chapter 12 An Overview on Thermal Characterization of Lithium-Ion Batteries for Enhancing the Durability -- 12.1 Introduction -- 12.1.1 Li-Ion Batteries -- 12.2 Thermal Behavior of Li-Ion Battery -- 12.3 Heat Generation Mechanism and Thermal Modeling -- 12.3.1 Ohmic Heating -- 12.3.2 Faradaic Heating -- 12.3.3 Concentration Polarization -- 12.3.4 Side Reactions -- 12.3.5 1D, 2D, or 3D Thermal Models -- 12.3.5.1 Multiphysics Coupling -- 12.3.5.2 Thermal Runaway Prediction Models -- 12.4 The Effect of Temperature on Li-Ion Batteries -- 12.4.1 Optimal Operating Temperature Range -- 12.4.2 Capacity and Power Output -- 12.4.3 Degradation and Aging -- 12.4.4 Safety Concerns -- 12.4.5 Thermal Management -- 12.4.6 Charging and Discharging Behavior -- 12.5 Thermal Runway Modeling and Safety Tests -- 12.5.1 Thermal Runaway Modeling -- 12.5.1.1 Multiphysics Simulations -- 12.5.1.2 Reaction Kinetics -- 12.5.1.3 Catastrophic Failure Prediction -- 12.5.2 Safety Tests -- 12.5.2.1 Accelerated Rate Calorimetry (ARC) -- 12.5.2.2 Differential Scanning Calorimetry (DSC) -- 12.5.2.3 Thermal Abuse Testing -- 12.5.2.4 Thermal Imaging and In-Situ Measurements -- 12.6 Interior Electrode Modifications -- 12.6.1 Nanostructured Materials -- 12.6.2 Coating and Additives -- 12.6.3 Conductive Networks -- 12.6.4 Porosity and Structure Control -- 12.6.5 Thermal Conductive Materials. 12.6.6 Advanced Composite Structures. |
| Record Nr. | UNINA-9911020038103321 |
Kumar Ashwani
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sustainable Mobility : Policies, Challenges and Advancements
| Sustainable Mobility : Policies, Challenges and Advancements |
| Autore | Kumar Ashwani |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 388 |
| Altri autori (Persone) |
PrasadArbind
KumarGaurav |
| Soggetto topico |
Sustainable transportation
Electric vehicles |
| ISBN |
9781394166831
1394166834 9781394166824 1394166826 9781394166817 1394166818 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Aim and Scope -- Preface -- Acknowledgement -- Chapter 1 Sustainable Mobility: Clean Energy Integration with Electric Vehicle Technology -- 1.1 Introduction -- 1.2 Transportation and Carbon Emission -- 1.3 Transportation Electrification -- 1.4 Electric Vehicle Integration with Renewable Sources -- 1.5 Solar Energy -- 1.6 Wind Energy -- 1.7 Integration with the Grid -- 1.8 State-of-the-Art Methods -- 1.9 Opportunities and Challenges -- 1.10 Conclusion -- Acknowledgement -- References -- Chapter 2 Sustainable Mobility Policies in Developed and Developing Countries -- 2.1 Introduction -- 2.2 Pollution by Air and Effect of Greenhouse Gases -- 2.3 Promotion of Cycling and Walking -- 2.4 Sustainable Trade and Global Governance -- 2.4.1 Socioeconomic Impacts -- 2.4.2 Technology Aspects -- 2.4.3 Role of Smart Connectivity in Sustainable Mobility -- 2.5 Discussion -- 2.6 Conclusion -- References -- Chapter 3 Transitions from IC Engine to EV and HEV: Current Status of EV in India -- 3.1 Introduction -- 3.2 Changing Electric Vehicles Trend -- 3.3 Case Study: Maruti Suzuki and EV Market -- 3.4 Numerous Downsides to Electric Cars -- 3.4.1 Ultra Expensive -- 3.4.2 Transport Not a Considerable Contributor to Emissions -- 3.4.3 Batteries as the Major Emitter -- 3.4.4 Need of Societal Change -- 3.5 Zero Emissions is a Myth -- 3.6 Prolonged Charging Time -- 3.7 Carbon Footprints -- 3.8 Degrading Battery Performance from Fast Charging -- 3.9 Underdeveloped Charging Infrastructure -- 3.10 Impractical for Inner-City Inhabitants and Lack of Resale Value -- 3.11 Reasons Behind Slow Adoption of Electric Vehicles in India -- 3.12 Conclusion -- References -- Chapter 4 Alternative Source Systems of In-Vehicle Electricity Production -- 4.1 Introduction -- 4.2 Electric Vehicles (EVs).
4.3 Passenger Electric Vehicle -- 4.3.1 Plug-In Battery Electric Vehicle (PBEV) -- 4.3.2 Plug-In Hybrid Electric Vehicle (PHEV) -- 4.3.3 Hybrid Electric Vehicles (HEV) -- 4.3.4 Commercial Electric Vehicle -- 4.3.4.1 Plug-In Battery Electric Vehicles -- 4.3.4.2 Plug-In Hybrid Electric Vehicles -- 4.3.4.3 Hydraulic Hybrid Electric Vehicle -- 4.4 Integration of Different Renewable Energy Resources with Power System of In-Vehicle Electricity Production -- 4.4.1 Fuel Cell Electric Vehicles (FCEVs) -- 4.4.2 Electric Vehicle Integration with Wind Energy -- 4.4.3 Electric Vehicle Integration with Solar Energy -- 4.4.4 Distribution Grid Management with Electrical Network -- 4.5 Factors Affecting Adoption of Alternative Fuel Vehicles -- 4.6 Conclusion on Market Penetration of Alternative Fuel Vehicles -- References -- Chapter 5 Autonomous Navigation of Unmanned Aerial Vehicle Using Reinforcement Learning -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Technology Used -- 5.3.1 System Architecture Overview -- 5.3.2 Reinforcement Learning and Control -- 5.3.3 Elements of Reinforcement Learning -- 5.4 Markov Decision Process (MDP) -- 5.4.1 Value Function and Action-Value Function -- 5.4.2 Q-Learning Algorithm -- 5.4.3 SARSA Algorithm -- 5.4.4 Robot Operating System (ROS) -- 5.5 Implementation: Flow of the Project Flow -- 5.6 Controller Design of Unmanned Aerial Vehicle (UAV) -- 5.6.1 Controller Design -- 5.6.2 Training Procedure of UAV -- 5.7 Results and Discussion -- 5.7.1 Experimental Results -- 5.8 Conclusion and Future Scope -- References -- Chapter 6 IoT-Based Automatic Vehicle Accident & -- Rash Driving Alert System -- 6.1 Introduction -- 6.2 Problem and Necessity -- 6.3 Need for the System -- 6.3.1 IoT Architecture -- 6.3.2 Sonar Sensor -- 6.3.3 Data Processing and Analysis -- 6.4 User Interface and Reporting -- 6.4.1 Results and Impact. 6.4.2 Challenges and Limitations -- 6.4.3 Future Enhancements -- 6.4.4 Architectural Design of the Work -- 6.6 Implementation: Tools for Controlling & -- Processing -- 6.7 Hardware Setup -- 6.7.1 Result -- 6.7.2 Conclusion -- 6.8 Applications -- Bibliography -- Chapter 7 Mobile Edge Communication, Computing and Caching (MEC3) in Vehicle Communication -- 7.1 Introduction to MEC3 in Vehicle Communication -- 7.2 What is Mobile EDGE? -- 7.2.1 Advantages of Mobile EDGE Computing -- 7.3 Mobile Edge Communication (MEC) -- 7.3.1 How We Can Use MEC -- 7.3.2 Opportunities in Mobile Edge Computing -- 7.3.3 Challenges of Mobile Edge Computing -- 7.3.4 Mobile Edge Computing Uses -- 7.3.5 Multi-Access vs. Mobile Edge Computing -- 7.3.6 Mobile Edge Computing Importance -- 7.4 Mobile Edge Caching -- 7.4.1 The Architecture of Mobile Edge Caching -- 7.5 Technology Description -- 7.5.1 Advantages and Disadvantages of MEC3 -- 7.6 Applications of MEC3 -- 7.7 Conclusion -- Bibliography -- Chapter 8 IoT-Based Automatic Vehicle Tracking and Accident Alert System -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Methodology -- 8.4 Programming Code -- 8.5 Results and Discussion -- 8.6 Conclusion and Future Scope -- Bibliography -- Chapter 9 Interfacing of GPS and GSM with the Help of NodeMCU for Vehicle Monitoring and Tracking -- 9.1 Introduction -- 9.2 Problem Statement -- 9.3 Literature Review -- 9.4 Monitoring and Tracking of Vehicles -- 9.5 Result and Discussion -- 9.6 Conclusion -- References -- Chapter 10 A Comprehensive Analysis of Cell Balancing in BMS for Electric Vehicle -- 10.1 Introduction -- 10.2 Cell Balancing Methods -- 10.2.1 Passive Cell Balancing -- 10.2.1.1 Proposed Block Diagram of Passive Cell Balancing -- 10.2.2 Active Cell Balancing -- 10.3 Proposed Topology -- 10.3.1 Working Modes for Two Cells -- 10.3.2 Algorithm for Two Cells Balancing. 10.3.2.1 Block Diagram of Proposed Active Cell Balancing for Two Cell -- 10.3.3 SOC-Voltage-Based Inductive Buck Boost Active Cell Balancing -- 10.4 Conclusion -- References -- Chapter 11 Analyzing and Testing of Fuel Cell Hybrid Electric Vehicles -- 11.1 Introduction -- 11.2 Battery Management System -- 11.2.1 Classification -- 11.2.2 Challenges of Fuel Cell Hybrid Electric Vehicles -- 11.3 System Setup -- 11.3.1 Block Diagram -- 11.3.2 Components -- 11.3.3 System Methodology -- 11.4 Simulations -- 11.4.1 Efficiency and Continuous Torque Capability -- 11.4.2 National Renewable Energy Laboratory (NREL) -- 11.4.3 Output Graphs -- 11.5 Conclusion -- References -- Chapter 12 Cyberattacks, Threats and Challenges of Cybersecurity: An Outline -- 12.1 Introduction -- 12.2 Background Work -- 12.3 Security Properties and CIA Triad -- 12.3.1 Confidentiality -- 12.3.2 Integrity -- 12.3.3 Availability -- 12.4 Types of Cyber Threats -- 12.4.1 Cybercrime -- 12.4.2 Cyber Terrorism -- 12.4.3 Cyber Warfare -- 12.5 Types of Cyberattacks -- 12.5.1 Denial of Service -- 12.5.2 Trojan Horse -- 12.5.3 Malware -- 12.5.4 SQL Injection Attack -- 12.5.5 Man-in-the-Middle -- 12.5.6 Reconnaissance Attack -- 12.6 Challenges in Cybersecurity -- 12.6.1 Cybersecurity Challenges in Education -- 12.6.2 Cybersecurity Challenges in Smart Grid -- 12.6.3 Cybersecurity Challenges in IoT and Cloud Computing -- 12.6.4 Cybersecurity Challenges in Connected Home Ecosystem -- 12.7 Bibliometric Analysis and Discussion -- 12.8 Conclusion -- References -- Chapter 13 Opportunities and Challenges of Data-Driven Cybersecurity for Smart Cities: Blockchain-Driven Approach -- 13.1 Introduction -- 13.2 Background Work -- 13.3 Attacks on the Layers of IoT-Enabled Smart City -- 13.4 Issues and Challenges in Smart Cities -- 13.5 Blockchain and its Types -- 13.6 Smart City Issues with Blockchain. 13.7 Conclusion -- References -- Chapter 14 On Renewable Energy Source Selection Problem Using T-Spherical Fuzzy Soft Dombi Aggregation Operators -- 14.1 Introduction -- 14.2 Preliminaries -- 14.3 T-Spherical Fuzzy Soft Dombi Aggregation Operators -- 14.4 Application of T-Spherical Fuzzy Soft Dombi Aggregation Operators in Renewable Energy Source Selection -- 14.5 Conclusion and Scope for Future Work -- References -- Chapter 15 Detection of Weather with Hypothesis Testing Performed Through VGG19 Model Utilizing Adam Optimizer -- 15.1 Introduction -- 15.2 Literature -- 15.3 Input Dataset -- 15.4 Data Validation -- 15.5 Weather Classification Using VGG19 Model -- 15.6 Results -- 15.6.1 Weather Classification Using VGG19 Model on Adam Optimizer -- 15.6.2 Classification Output of Dataset Parameters After Model Optimization -- 15.6.3 Confusion Matrix Comparison of Dataset Parameters -- 15.7 Conclusion -- References -- Chapter 16 Enhanced Ride-Through Capability of a Hybrid Microgrid Under Symmetric and Asymmetric Faults -- 16.1 Introduction -- 16.2 Design of the Hybrid Microgrid -- 16.2.1 AC Bus Faults - LG, LL, LLG, LLLG, LLL -- 16.2.2 DC Bus Faults: Pole to Ground, Pole to Ground and Pole to Pole Fault -- 16.3 HMG Inverter Control -- 16.3.1 Problem Formulation -- 16.4 Grid-Tied Inverter Control -- 16.5 Fault Analysis -- 16.5.1 LG Fault (A-G) -- 16.6 LLG Fault (A-B-G) -- 16.7 LL Fault (A-B) -- 16.8 LLL and LLLG Faults -- 16.9 DC Bus Fault -- 16.10 Conclusion -- Acknowledgements -- References -- About the Editors -- Index -- EULA. |
| Record Nr. | UNINA-9911019233303321 |
Kumar Ashwani
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermal Battery Management System for Hybrid and Electric Vehicles
| Thermal Battery Management System for Hybrid and Electric Vehicles |
| Autore | Kumar Ashwani |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (419 pages) |
| Disciplina | 629.25024 |
| Altri autori (Persone) |
AwasthiMukesh Kumar
DuttNitesh SinglaYogesh Kumar ThangavelSivasakthivel |
| ISBN |
1-394-28923-5
1-394-28922-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911021977703321 |
Kumar Ashwani
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||