Advances in Mechatronics Systems : Principles, Elements and Applications
| Advances in Mechatronics Systems : Principles, Elements and Applications |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Singapore : , : Springer, , 2025 |
| Descrizione fisica | 1 online resource (206 pages) |
| Disciplina | 621 |
| Altri autori (Persone) |
KumarParveen
AziziAydin |
| Collana | Emerging Trends in Mechatronics Series |
| ISBN |
9789819784721
9819784727 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910917787703321 |
Kumar Ajay
|
||
| Singapore : , : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Contactless 3D Fingerprint Identification / / by Ajay Kumar
| Contactless 3D Fingerprint Identification / / by Ajay Kumar |
| Autore | Kumar Ajay |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (129 pages) |
| Disciplina | 363.258 |
| Collana | Advances in Computer Vision and Pattern Recognition |
| Soggetto topico |
Biometry
Artificial intelligence Computational intelligence Computers Law and legislation Biometrics Artificial Intelligence Computational Intelligence Legal Aspects of Computing |
| ISBN | 3-319-67681-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction to Trends in Fingerprint Identification -- 3D Fingerprint Image Acquisition Methods -- Contactless and Live 3D Fingerprint Imaging -- 3D Fingerprint Acquisition Using Colored Photometric Stereo -- 3D Fingerprint Image Preprocessing and Enhancement -- Representation, Recovery and Matching of 3D Minutiae Template -- Other Methods of 3D Fingerprint Matching -- Individuality of 3D Fingerprints. |
| Record Nr. | UNINA-9910299162403321 |
Kumar Ajay
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
| Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (299 pages) |
| Altri autori (Persone) |
KumarParveen
SinghHari GulatiVishal Kumar SinghPravin |
| ISBN |
1-119-98645-1
1-119-98643-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Incremental Sheet Forming - A State-of-Art Review -- 1.1 Introduction to Incremental Sheet Forming -- 1.2 Incremental Sheet Forming Process -- 1.2.1 Single-Point Incremental Sheet Forming (SPISF) -- 1.2.2 Two-Point Incremental Sheet Forming (TPISF) -- 1.2.3 Double-Sided Incremental Forming -- 1.2.4 Hybrid Incremental Forming -- 1.2.5 Thermal-Assisted Incremental Forming (TAIF) -- 1.3 Materials for Incremental Sheet Forming -- 1.4 Formability Limits with AI Implementation -- 1.5 Conclusions and Future Scope -- References -- Chapter 2 Classification of Incremental Sheet Forming -- 2.1 Introduction -- 2.1.1 History -- 2.2 Classification of ISF -- 2.2.1 Classification Based on Forming Methods of ISF -- 2.2.1.1 SPIF -- 2.2.1.2 TPIF -- 2.2.1.3 MPIF -- 2.2.1.4 Hybrid-ISF -- 2.2.2 Classification Based on Forming Tools of ISF -- 2.2.3 Classification Based on Forming Path of ISF -- 2.2.4 Classification Based on Forming Machine of ISF -- 2.2.5 Classification Based on Hot Forming of ISF -- 2.3 Conclusion -- 2.4 Future Work -- References -- Chapter 3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming -- 3.1 Introduction -- 3.2 Process Parameters -- 3.2.1 Effects of Process Parameters on Surface Roughness -- 3.2.2 Effect of Process Parameters on Forming Force -- 3.2.3 Effect of Process Parameters on Formability -- 3.2.4 Effect of Process Parameters on Thickness Distribution -- 3.2.5 Effect of Process Parameters on Dimensional Accuracy -- 3.2.6 Effect of Process Parameters on the Processing Time -- 3.2.7 Effect of Process Parameters on Energy Consumption -- 3.3 Conclusion -- 3.4 Future Work -- Funding Statement -- Conflicts of Interest -- Acknowledgment -- References.
Chapter 4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Original Equipment -- 4.2.2 Methodology -- 4.3 Results and Discussion -- 4.3.1 Hot SPIF System -- 4.3.1.1 Forming Temperatures Range -- 4.3.1.2 Concept -- 4.3.1.3 Heating Units and Control -- System Validation -- 4.3.1.4 Forming Tool -- 4.3.1.5 Costs Assessment -- 4.3.2 Hot SPIF of Ti-6Al-4V -- 4.3.2.1 Overview -- 4.3.2.2 Temperature Cycles -- 4.3.2.3 Practices for Higher Accuracy -- 4.4 Conclusion -- References -- Chapter 5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review -- 5.1 Introduction -- 5.2 Crystallographic Texture -- 5.2.1 Introduction to Crystallographic Texture -- 5.2.2 Texture Evolution During ISF -- 5.2.2.1 Texture Evolution During ISF of Aluminum Alloys -- 5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF -- 5.3 Microstructure Evolution During ISF -- 5.3.1 Microstructures -- 5.3.2 Microstructure Evolution During ISF in Various Materials -- 5.3.2.1 AA5052 Aluminum Alloy -- 5.3.2.2 Dual Phase (DP590) Steel -- 5.4 Deformation Mechanism During ISF -- 5.4.1 Membrane Strain -- 5.4.2 Shear Deformation -- 5.4.3 Bending Under Tension (BUT) -- 5.5 Future Scope -- 5.6 Summary -- Abbreviations -- References -- Chapter 6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming -- 6.1 Introduction -- 6.1.1 Classification of ISF Based on Forming Methods -- 6.2 Experimental Setup -- 6.2.1 Machining Parameters in ISF -- 6.2.2 Tool Path Strategies -- 6.3 FE Analysis of ISF -- 6.3.1 Analysis of Stress on Parts -- 6.3.2 Forces Behavior in ISF -- 6.3.3 Stress Effect on Thinning Part -- 6.3.4 Applications of ISF -- 6.3.5 Result and Discussion -- 6.3.5.1 Stress Behavior -- 6.3.5.2 Force Behavior -- 6.3.5.3 Thinning Characteristics. 6.4 Conclusion -- 6.5 Future work -- References -- Chapter 7 Finite Element Simulation Approach in Incremental Sheet Forming Process -- 7.1 Introduction -- 7.2 Finite Element Simulation -- 7.2.1 Definition -- 7.2.2 History of Finite Element Method -- 7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.4 Categories and Types of Finite Element Method Simulation -- 7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process -- 7.3 Conclusion -- References -- Chapter 8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Data Collection -- 8.2.2 Problem Description -- 8.2.3 FMEA Analysis -- 8.2.4 Fault Tree Analysis -- 8.2.5 Fishbone Diagram -- 8.3 Result and Analysis -- 8.4 Discussion -- 8.5 Conclusion -- References -- Chapter 9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming -- 9.1 Introduction -- 9.2 Background -- 9.3 Communication Protocol Overview -- 9.3.1 HTTP: Hyper Text Transfer Protocol -- 9.3.2 CoAP: Constrained Application Protocols -- 9.3.3 MQTT: MQ Telemetry Transport -- 9.3.4 DDS: Data Distribution Services -- 9.3.5 AMQP: Advanced Message Queuing Protocol -- 9.3.6 XMPP: Extensible Messaging and Presence Protocol -- 9.4 Comparative Study of Communication Protocol for IoT Premise -- 9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated -- 9.6 Challenges and Related Issues -- 9.7 Conclusion and Future Scope -- References -- Chapter 10 Blockchain for the Internet of Things and Industry 4.0 Application -- 10.1 Introduction -- 10.2 Blockchain's Application in a Wide Range of Industries -- 10.2.1 Supply Chain -- 10.2.2 Financial Transactions. 10.2.3 Encryption of Data -- 10.2.4 Product Information -- 10.2.5 Peer-to-Peer Trading -- 10.3 Blockchain Plays in the Future of Our Economy -- 10.3.1 The End of Corruption -- 10.3.2 Integrity -- 10.3.3 Contracts Without the Middle Person -- 10.3.4 No Financial Stand -- 10.3.5 Easier Management Without Analytics -- 10.4 Changes in Society Using the Internet of Things and Blockchain -- 10.4.1 Changes Through Blockchain -- 10.4.2 Changes Through the Internet of Things -- 10.5 Blockchain Transform Industries and the Economy -- 10.6 Blockchain Support Swinburne's Industry 4.0 Strategy -- 10.7 Blockchain Technology's Impact on the Digital Economy -- 10.7.1 Changes in the Architecture -- 10.7.2 Networking and Verification Expenses Are Reduced -- 10.7.3 Automation -- 10.8 Chains Are Being Revolutionized by Blockchain Technology -- 10.8.1 Manual Procedures Are Being Replaced -- 10.8.2 Increased Traceability -- 10.8.3 Reliability and Trustworthiness Are Being Improved -- 10.8.4 Processing Transactions in a Timely and Effective Manner -- 10.9 Businesses That Use Blockchain Technology -- 10.9.1 Blockchain Can Boost Supply Chain Value -- 10.10 Real-World Use Cases for dApps and Smart Contracts -- 10.10.1 Financial Use Cases for Smart Contracts -- 10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts -- 10.10.3 Blockchain and Smart Contracts in the Legal Industry -- 10.10.4 Real Estate and Blockchain -- 10.10.5 Creating DAOs with Smart Contracts for Corporate Structures -- 10.10.6 Smart Contracts in Emerging Technology Applications -- 10.10.7 Smart Contracts' Potential Benefits in Other Industries -- 10.11 Blockchain Is About to Revolutionize the Courtroom -- 10.11.1 Enhanced Security Levels -- 10.11.2 Better Agreements -- 10.12 Conclusion -- References. Chapter 11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal -- 11.1 Introduction -- 11.1.1 Composite Material: Overview -- 11.1.2 Classification of Composite Materials -- 11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material -- 11.1.4 Advantages of Composites -- 11.1.5 Why Composites Are Replacing Traditional Sheet Metals -- 11.1.5.1 High Degree of Strength -- 11.1.5.2 Longer Life Span -- 11.1.5.3 Composites Allow New Design Possibilities -- 11.1.6 Applications of Hybrid Composites Over Sheet Metals -- 11.1.7 Failure Modes -- 11.1.8 Concerns About Disposal and Reuse -- 11.1.9 Problem Definition -- 11.1.10 Layout of the Project -- 11.1.11 Research Objectives -- 11.1.12 Research Application -- 11.2 Proposed Methodology -- 11.3 Experimental Procedure -- 11.3.1 Raw Materials -- 11.3.1.1 E-Glass Fiber (CSM) -- 11.3.1.2 Epoxy Resin (Araldite LY556) -- 11.3.1.3 Hardener (Aradur HY951) -- 11.3.1.4 Flat Copper Sheet -- 11.3.2 Mold Preparation -- 11.3.3 Releasing Agent -- 11.3.4 Plain Weave Copper Strips Mesh Preparation -- 11.3.5 Composite Preparation -- 11.3.6 De-Molding Process -- 11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites -- 11.3.7.1 Tensile Strength Testing -- 11.3.7.2 Flexural Strength Testing -- 11.3.7.3 Izod Impact Strength Testing -- 11.3.7.4 Shore D Hardness Testing -- 11.3.7.5 Density Testing -- 11.4 Results and Discussions -- 11.4.1 Tensile Strength -- 11.4.2 Flexural Strength -- 11.4.3 Izod Impact Strength -- 11.4.4 Shore D Hardness -- 11.4.5 Density -- 11.5 Conclusions -- 11.6 Future Scope -- References -- Chapter 12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems -- 12.1 Introduction: Background and Overview -- 12.1.1 Definition of Key Terms. 12.2 Description of Machining, Bending, and Assembly Processes. |
| Record Nr. | UNINA-9910830304403321 |
Kumar Ajay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
| Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (299 pages) |
| Disciplina | 671.823 |
| Altri autori (Persone) |
KumarParveen (Professor of mechanical engineering)
SinghHari GulatiVishal Kumar SinghPravin |
| Soggetto topico |
Industry 4.0
Sheet-metal |
| ISBN |
9781119986454
1119986451 9781119986430 1119986435 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Incremental Sheet Forming - A State-of-Art Review -- 1.1 Introduction to Incremental Sheet Forming -- 1.2 Incremental Sheet Forming Process -- 1.2.1 Single-Point Incremental Sheet Forming (SPISF) -- 1.2.2 Two-Point Incremental Sheet Forming (TPISF) -- 1.2.3 Double-Sided Incremental Forming -- 1.2.4 Hybrid Incremental Forming -- 1.2.5 Thermal-Assisted Incremental Forming (TAIF) -- 1.3 Materials for Incremental Sheet Forming -- 1.4 Formability Limits with AI Implementation -- 1.5 Conclusions and Future Scope -- References -- Chapter 2 Classification of Incremental Sheet Forming -- 2.1 Introduction -- 2.1.1 History -- 2.2 Classification of ISF -- 2.2.1 Classification Based on Forming Methods of ISF -- 2.2.1.1 SPIF -- 2.2.1.2 TPIF -- 2.2.1.3 MPIF -- 2.2.1.4 Hybrid-ISF -- 2.2.2 Classification Based on Forming Tools of ISF -- 2.2.3 Classification Based on Forming Path of ISF -- 2.2.4 Classification Based on Forming Machine of ISF -- 2.2.5 Classification Based on Hot Forming of ISF -- 2.3 Conclusion -- 2.4 Future Work -- References -- Chapter 3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming -- 3.1 Introduction -- 3.2 Process Parameters -- 3.2.1 Effects of Process Parameters on Surface Roughness -- 3.2.2 Effect of Process Parameters on Forming Force -- 3.2.3 Effect of Process Parameters on Formability -- 3.2.4 Effect of Process Parameters on Thickness Distribution -- 3.2.5 Effect of Process Parameters on Dimensional Accuracy -- 3.2.6 Effect of Process Parameters on the Processing Time -- 3.2.7 Effect of Process Parameters on Energy Consumption -- 3.3 Conclusion -- 3.4 Future Work -- Funding Statement -- Conflicts of Interest -- Acknowledgment -- References.
Chapter 4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Original Equipment -- 4.2.2 Methodology -- 4.3 Results and Discussion -- 4.3.1 Hot SPIF System -- 4.3.1.1 Forming Temperatures Range -- 4.3.1.2 Concept -- 4.3.1.3 Heating Units and Control -- System Validation -- 4.3.1.4 Forming Tool -- 4.3.1.5 Costs Assessment -- 4.3.2 Hot SPIF of Ti-6Al-4V -- 4.3.2.1 Overview -- 4.3.2.2 Temperature Cycles -- 4.3.2.3 Practices for Higher Accuracy -- 4.4 Conclusion -- References -- Chapter 5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review -- 5.1 Introduction -- 5.2 Crystallographic Texture -- 5.2.1 Introduction to Crystallographic Texture -- 5.2.2 Texture Evolution During ISF -- 5.2.2.1 Texture Evolution During ISF of Aluminum Alloys -- 5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF -- 5.3 Microstructure Evolution During ISF -- 5.3.1 Microstructures -- 5.3.2 Microstructure Evolution During ISF in Various Materials -- 5.3.2.1 AA5052 Aluminum Alloy -- 5.3.2.2 Dual Phase (DP590) Steel -- 5.4 Deformation Mechanism During ISF -- 5.4.1 Membrane Strain -- 5.4.2 Shear Deformation -- 5.4.3 Bending Under Tension (BUT) -- 5.5 Future Scope -- 5.6 Summary -- Abbreviations -- References -- Chapter 6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming -- 6.1 Introduction -- 6.1.1 Classification of ISF Based on Forming Methods -- 6.2 Experimental Setup -- 6.2.1 Machining Parameters in ISF -- 6.2.2 Tool Path Strategies -- 6.3 FE Analysis of ISF -- 6.3.1 Analysis of Stress on Parts -- 6.3.2 Forces Behavior in ISF -- 6.3.3 Stress Effect on Thinning Part -- 6.3.4 Applications of ISF -- 6.3.5 Result and Discussion -- 6.3.5.1 Stress Behavior -- 6.3.5.2 Force Behavior -- 6.3.5.3 Thinning Characteristics. 6.4 Conclusion -- 6.5 Future work -- References -- Chapter 7 Finite Element Simulation Approach in Incremental Sheet Forming Process -- 7.1 Introduction -- 7.2 Finite Element Simulation -- 7.2.1 Definition -- 7.2.2 History of Finite Element Method -- 7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.4 Categories and Types of Finite Element Method Simulation -- 7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process -- 7.3 Conclusion -- References -- Chapter 8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Data Collection -- 8.2.2 Problem Description -- 8.2.3 FMEA Analysis -- 8.2.4 Fault Tree Analysis -- 8.2.5 Fishbone Diagram -- 8.3 Result and Analysis -- 8.4 Discussion -- 8.5 Conclusion -- References -- Chapter 9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming -- 9.1 Introduction -- 9.2 Background -- 9.3 Communication Protocol Overview -- 9.3.1 HTTP: Hyper Text Transfer Protocol -- 9.3.2 CoAP: Constrained Application Protocols -- 9.3.3 MQTT: MQ Telemetry Transport -- 9.3.4 DDS: Data Distribution Services -- 9.3.5 AMQP: Advanced Message Queuing Protocol -- 9.3.6 XMPP: Extensible Messaging and Presence Protocol -- 9.4 Comparative Study of Communication Protocol for IoT Premise -- 9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated -- 9.6 Challenges and Related Issues -- 9.7 Conclusion and Future Scope -- References -- Chapter 10 Blockchain for the Internet of Things and Industry 4.0 Application -- 10.1 Introduction -- 10.2 Blockchain's Application in a Wide Range of Industries -- 10.2.1 Supply Chain -- 10.2.2 Financial Transactions. 10.2.3 Encryption of Data -- 10.2.4 Product Information -- 10.2.5 Peer-to-Peer Trading -- 10.3 Blockchain Plays in the Future of Our Economy -- 10.3.1 The End of Corruption -- 10.3.2 Integrity -- 10.3.3 Contracts Without the Middle Person -- 10.3.4 No Financial Stand -- 10.3.5 Easier Management Without Analytics -- 10.4 Changes in Society Using the Internet of Things and Blockchain -- 10.4.1 Changes Through Blockchain -- 10.4.2 Changes Through the Internet of Things -- 10.5 Blockchain Transform Industries and the Economy -- 10.6 Blockchain Support Swinburne's Industry 4.0 Strategy -- 10.7 Blockchain Technology's Impact on the Digital Economy -- 10.7.1 Changes in the Architecture -- 10.7.2 Networking and Verification Expenses Are Reduced -- 10.7.3 Automation -- 10.8 Chains Are Being Revolutionized by Blockchain Technology -- 10.8.1 Manual Procedures Are Being Replaced -- 10.8.2 Increased Traceability -- 10.8.3 Reliability and Trustworthiness Are Being Improved -- 10.8.4 Processing Transactions in a Timely and Effective Manner -- 10.9 Businesses That Use Blockchain Technology -- 10.9.1 Blockchain Can Boost Supply Chain Value -- 10.10 Real-World Use Cases for dApps and Smart Contracts -- 10.10.1 Financial Use Cases for Smart Contracts -- 10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts -- 10.10.3 Blockchain and Smart Contracts in the Legal Industry -- 10.10.4 Real Estate and Blockchain -- 10.10.5 Creating DAOs with Smart Contracts for Corporate Structures -- 10.10.6 Smart Contracts in Emerging Technology Applications -- 10.10.7 Smart Contracts' Potential Benefits in Other Industries -- 10.11 Blockchain Is About to Revolutionize the Courtroom -- 10.11.1 Enhanced Security Levels -- 10.11.2 Better Agreements -- 10.12 Conclusion -- References. Chapter 11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal -- 11.1 Introduction -- 11.1.1 Composite Material: Overview -- 11.1.2 Classification of Composite Materials -- 11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material -- 11.1.4 Advantages of Composites -- 11.1.5 Why Composites Are Replacing Traditional Sheet Metals -- 11.1.5.1 High Degree of Strength -- 11.1.5.2 Longer Life Span -- 11.1.5.3 Composites Allow New Design Possibilities -- 11.1.6 Applications of Hybrid Composites Over Sheet Metals -- 11.1.7 Failure Modes -- 11.1.8 Concerns About Disposal and Reuse -- 11.1.9 Problem Definition -- 11.1.10 Layout of the Project -- 11.1.11 Research Objectives -- 11.1.12 Research Application -- 11.2 Proposed Methodology -- 11.3 Experimental Procedure -- 11.3.1 Raw Materials -- 11.3.1.1 E-Glass Fiber (CSM) -- 11.3.1.2 Epoxy Resin (Araldite LY556) -- 11.3.1.3 Hardener (Aradur HY951) -- 11.3.1.4 Flat Copper Sheet -- 11.3.2 Mold Preparation -- 11.3.3 Releasing Agent -- 11.3.4 Plain Weave Copper Strips Mesh Preparation -- 11.3.5 Composite Preparation -- 11.3.6 De-Molding Process -- 11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites -- 11.3.7.1 Tensile Strength Testing -- 11.3.7.2 Flexural Strength Testing -- 11.3.7.3 Izod Impact Strength Testing -- 11.3.7.4 Shore D Hardness Testing -- 11.3.7.5 Density Testing -- 11.4 Results and Discussions -- 11.4.1 Tensile Strength -- 11.4.2 Flexural Strength -- 11.4.3 Izod Impact Strength -- 11.4.4 Shore D Hardness -- 11.4.5 Density -- 11.5 Conclusions -- 11.6 Future Scope -- References -- Chapter 12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems -- 12.1 Introduction: Background and Overview -- 12.1.1 Definition of Key Terms. 12.2 Description of Machining, Bending, and Assembly Processes. |
| Record Nr. | UNINA-9911019587603321 |
Kumar Ajay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industry 4.0 Driven Manufacturing Technologies / / edited by Ajay Kumar, Parveen Kumar, Yang Liu
| Industry 4.0 Driven Manufacturing Technologies / / edited by Ajay Kumar, Parveen Kumar, Yang Liu |
| Autore | Kumar Ajay |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (0 pages) |
| Disciplina | 670 |
| Altri autori (Persone) |
KumarParveen (Professor of mechanical engineering)
LiuYang |
| Collana | Springer Series in Advanced Manufacturing |
| Soggetto topico |
Industrial engineering
Production engineering Artificial intelligence Internet of things User interfaces (Computer systems) Human-computer interaction Computational intelligence Industrial and Production Engineering Artificial Intelligence Internet of Things User Interfaces and Human Computer Interaction Computational Intelligence |
| ISBN |
9783031682711
3031682718 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Industry 4.0 in Manufacturing technologies: Pathways and Practices -- Chapter 2. Manufacturing 4.0 evaluation and revolution: A conceptual Framework -- Modeling the barriers in adoption of Industry 4.0 in manufacturing -- Bibliometric analysis of manufacturing techniques in context of Industry 4.0 -- Digital twin Model for advanced manufacturing systems -- Manufacturing techniques triggered by Industrial Artificial Intelligence. |
| Record Nr. | UNINA-9910887875003321 |
Kumar Ajay
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microbes Based Approaches for the Management of Hazardous Contaminants
| Microbes Based Approaches for the Management of Hazardous Contaminants |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (461 pages) |
| Altri autori (Persone) |
ShuklaLivleen
SinghJoginder Romanholo FerreiraLuiz Fernando |
| Soggetto topico |
Microbial ecology
Soil remediation |
| ISBN |
9781119851158
1119851157 9781119851141 1119851149 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Mycobial Nanotechnology in Bioremediation of Wastewater -- 1.1 Fungi -- 1.2 Nanotechnology Aspects -- 1.3 The Production of Nanoparticles Using an Origin of Fungi -- 1.3.1 Silver Nanoparticles -- 1.3.2 Gold Nanoparticles -- 1.3.3 Additional Nanoparticles -- 1.4 Categories and Characteristics of Synthesized Nanoparticles -- 1.4.1 Characteristics on Nanoparticles -- 1.4.2 Physical Characteristics -- 1.4.3 Biological Characteristics -- 1.4.4 Medical Benefits -- 1.4.5 Mechanical Characteristics -- 1.4.6 Optical Characteristics -- 1.4.7 Electrical Characteristics -- 1.5 Various Usage of Nanomaterials -- 1.6 Mycobial Bioremediation of Heavy Metals from Wastewater -- 1.7 Benefits of Mycobial Bioremediation -- 1.8 Constraints of Mycobial Bioremediation -- 1.9 Conclusion and Future Prospects -- References -- Chapter 2 Microbial Enzymes in Biodegradation of Organic Pollutants: Mechanisms and Applications -- 2.1 Introduction -- 2.1.1 Mechanism of Microbial Enzymes in Bioremediation of Organic Pollutants -- 2.1.1.1 Fungi -- 2.1.1.2 Bacteria -- 2.1.1.3 Algae -- 2.1.1.4 Other Microbes -- 2.1.2 Applications of Microbial Enzymes Mediated Bioremediation -- 2.1.3 Factors Affecting Enzymatic Biodegradation -- 2.2 Conclusion -- References -- Chapter 3 Microbe Assisted Remediation of Xenobiotics: A Sustainable Solution -- 3.1 Introduction -- 3.1.1 Sources of Xenobiotics -- 3.1.2 The Effects of Xenobiotics on Environment -- 3.1.2.1 Effect of Xenobiotics on Soil -- 3.1.2.2 Effect of Xenobiotics on Water -- 3.1.2.3 Effect of Xenobiotics on Plants -- 3.1.2.4 Effect of Xenobiotics on Marine Life -- 3.1.2.5 Effect of Xenobiotics on Terrestrial Animals -- 3.1.2.6 Effect of Xenobiotics on Human Health -- 3.2 Bioremediation -- 3.2.1 Factors Affecting Bioremediation.
3.3 Environmental Factors -- 3.3.1 Strategies for Bioremediation -- 3.3.1.1 In Situ Bioremediation Strategies -- 3.3.2 Bioventing -- 3.3.3 Biosparging -- 3.3.4 Bioaugmentation -- 3.3.5 Biostimulation -- 3.4 Ex Situ Bioremediation Strategies -- 3.4.1 Landfarming -- 3.4.2 Composting -- 3.4.3 Biopiling -- 3.5 Genetic Engineering Approaches -- 3.6 The Beneficial Role of Microbes in Degradation of Different Pollutants -- 3.6.1 In Heavy Metal Bioremediation -- 3.7 Mechanism of Heavy Metal Detoxification by Microbes -- 3.7.1 Biosorption Mechanisms -- 3.8 Intracellular Sequestration -- 3.9 Extracellular Sequestration -- 3.9.1 Metal Methylation -- 3.10 Reduction of Heavy Metal Ions by Microbial Cell -- 3.10.1 In Dye Bioremediation -- 3.11 The Degradation Mechanism of the Complex Dye Structure by Microbes -- 3.11.1 In Pesticide Bioremediation -- 3.11.2 In Petroleum Hydrocarbons and Chlorinated Compound Bioremediation -- 3.12 In Domestic and Agricultural Lignocellulose Wastes Remediation -- 3.13 Conclusion -- References -- Chapter 4 Bioremediation Strategies as Sustainable Bio-Tools for Mitigationof Emerging Pollutants -- 4.1 Introduction -- 4.2 Bioremediation by Microbial Strains -- 4.2.1 Aerobic -- 4.2.2 Anaerobic -- 4.3 Factors Affecting Microbial Bioremediation -- 4.3.1 Principle of Bioremediation -- 4.4 Classification of Bioremediations -- 4.4.1 Land Farming -- 4.4.2 Biopile -- 4.4.3 Bioreactor -- 4.4.3.1 In Situ Bioremediation Techniques -- 4.4.3.2 Intrinsic In Situ Bioremediation -- 4.4.3.3 Engineered In Situ Bioremediation -- 4.4.4 Windrows -- 4.4.5 Bioslurping -- 4.4.6 Bioventing -- 4.4.7 Phytoremediation -- 4.4.8 Biosparging -- 4.5 Bioremediation of Various Pollutants -- 4.5.1 Bioremediation for Inorganic Pollutants -- 4.5.2 Bioremediation for Organic Pollutants -- 4.6 Recent Advancement and Challenges in Bioremediation. 4.6.1 Bioinformatics Approaches in Bioremediation -- 4.6.2 Bioremediation Tools Based on Omics -- 4.6.2.1 Transcriptomics and Metatranscriptomics -- 4.6.2.2 Genomics -- 4.6.2.3 Proteomics and Metabolomics -- 4.6.3 Bioremediation Using Nanotechnological Methods -- 4.6.3.1 Designing the Synthetic Microbial Communities -- 4.6.3.2 Engineered Polymeric Nanoparticles for Hydrophobic Contaminant Bioremediation -- 4.6.3.3 Nanotechnology and Microbes -- 4.6.3.4 Genetic and Metabolic Engineering -- 4.7 Advantages and Disadvantages -- 4.8 Conclusion -- 4.9 Future Perspective -- References -- Chapter 5 How Can Plant-microbe Interactions be used for the Bioremediation of Metals in Water Bodies? -- 5.1 Water Contamination Issues -- 5.2 Metal Contamination Effects -- 5.3 Metal Bioremediation -- 5.4 Aquatic Macrophytes in Metal Phytoremediation Processes -- 5.5 Microorganisms in Metal Remediation -- 5.5.1 Microorganism Metal Resistance Mechanisms -- 5.6 Interaction Between Aquatic Macrophytes and Microorganisms -- 5.7 Conclusion -- References -- Chapter 6 Extremophilic Microorganisms for Environmental Bioremediation -- 6.1 Introduction -- 6.2 Extremophiles -- 6.3 Extremophilic Microorganisms Under Extreme Conditions -- 6.3.1 Acidophilic Microorganisms -- 6.3.2 Alkaliphilic Microorganisms -- 6.3.3 Halophilic -- 6.3.4 Thermophiles -- 6.3.5 Piezophile Microorganism -- 6.3.6 Psychrophilic Microorganisms -- 6.3.7 Radiophiles -- 6.4 Extremophiles Applications for Environmental Bioremediation -- 6.4.1 Treatment of Radioactive Waste -- 6.5 Bioremediation of Petroleum Product -- 6.5.1 Petroleum Hydrocarbon Microbial Degradation in Hypersaline Environments -- 6.5.2 Low-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons Occurrence -- 6.5.3 In High-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons. 6.5.4 Removal of Heavy Metal Pollutants -- 6.5.5 Degradation of Organic Pollutants -- 6.5.6 Wastewater Treatment -- 6.5.7 Textile Dye Degradation -- 6.5.8 Bioremediation of Pesticides -- 6.6 Conclusion and Future Perspective -- References -- Chapter 7 Bacterial/Fungal Inoculants: Application as Bio Stimulants -- 7.1 Introduction -- 7.1.1 Biological Nitrogen Fixation (BNF) -- 7.1.2 Production of an Iron Chelating Compound -- 7.1.3 Phytohormone Production -- 7.1.4 Solubilization of Phosphate (P) -- 7.2 Arbuscular Mycorrhizal Fungi (AMF) -- 7.2.1 Microbial Inoculants as Pathogens or Parasites -- 7.2.2 Other than Bacterial/Fungal Inoculants Algal Extracts also Play Important Role -- 7.2.3 Disruption of Ecosystem Services -- 7.2.4 World Market for PGPR-Based Biostimulants -- 7.3 Conclusion -- References -- Chapter 8 Microbial Inoculants and Their Potential Application in Bioremediation: Emphasis on Agrochemicals -- 8.1 Introduction -- 8.2 Pollution of Different Matrices by Agrochemicals -- 8.2.1 Soil -- 8.2.2 Water -- 8.2.3 Air -- 8.3 Different Strategies Employed in Bioremediation -- 8.3.1 In Situ Biodegradation Strategies -- 8.3.2 Ex Situ Biodegradation Strategies -- 8.4 Microbe-Mediated Bioremediation and Recent Advances -- 8.4.1 Bacterial Bioremediation -- 8.4.2 Fungal Bioremediation -- 8.4.3 Microalgae and Diatom-Based Bioremediation -- 8.5 Novel Enzymes or Genes Involved in Bioremediation of Pollutants -- 8.6 Conclusion -- References -- Chapter 9 Porous Nanomaterials for Enzyme Immobilization and Bioremediation Applications -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Model Enzymes With Multifunctional Attributes -- 9.3.1 Laccases -- 9.3.3 Peroxidases, i.e., Lignin and Manganese -- 9.3.4 Horseradish Peroxidases -- 9.4 Supports for Enzyme Immobilization -- 9.5 Inorganic Materials as Support Matrices. 9.6 Organic Materials as Support Matrices -- 9.7 Synthetic Polymers as Support Matrices -- 9.8 Nanomaterials as Supports for Enzyme Immobilization -- 9.9 Porous Nanomaterials as Supports for Enzyme Immobilization -- 9.10 Advantages of Enzyme Immobilization -- 9.10.1 Stabilization -- 9.10.2 Recovery and Reusability -- 9.10.3 Flexibility -- 9.11 Metal-Organic Frameworks as Supports for Enzyme Immobilization -- 9.12 Bioremediation Applications of Enzyme Immobilized Porous Nanomaterials -- 9.13 Future Directions -- 9.14 Conclusion -- References -- Chapter 10 Effects of Microbial Inoculants on Soil Nutrients and Microorganisms -- 10.1 Introduction -- 10.2 Microbial Inoculants and Soil Nutrients -- 10.3 Influence of Microbial Inoculants on Soil Nutrient Quality -- 10.3.1 Nitrogen -- 10.3.1.1 Symbiotic Nitrogen Fixation -- 10.3.1.2 Nonsymbiotic Nitrogen Fixation -- 10.3.2 Phosphorous -- 10.3.3 Potassium -- 10.3.4 Zinc -- 10.4 Impact of Microbial Inoculants on Natural Soil Microbial Communities -- 10.5 Microbial Inoculants: Mechanisms Involved in Affecting the Resident Microbial Community -- 10.5.1 Competition -- 10.5.2 Antagonism -- 10.5.3 Synergism -- 10.5.4 Indirect Effect Through Root Exudation -- 10.6 Effect of Monoinoculation Versus Coinoculation -- 10.7 Conclusion -- References -- Chapter 11 Bacterial Treatment of Industrial Wastewaters: Applications and Challenges -- 11.1 Introduction -- 11.2 Composition and Nature of Various Industrial Wastewater -- 11.2.1 Types and Sources of Wastewater on the Basis of Wastewater Production -- 11.2.2 Characteristics of Industrial Wastewater -- 11.2.2.1 Physical Characteristics of Wastewater -- 11.2.2.2 Chemical Characteristics of Wastewater -- 11.2.3 Biological Characteristics of Wastewater -- 11.3 Role of Bacteria in Biodegradation of Specific Pollutant Found in Wastewater. 11.4 Different Approaches and Mechanism of Bacterial Bioremediation in Industrial Wastewater. |
| Record Nr. | UNINA-9911019735703321 |
Kumar Ajay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microbial Biocontrol Techniques : Importance in Ensuring Food Security / / edited by Ajay Kumar, Manoj Kumar Solanki
| Microbial Biocontrol Techniques : Importance in Ensuring Food Security / / edited by Ajay Kumar, Manoj Kumar Solanki |
| Autore | Kumar Ajay |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (517 pages) |
| Disciplina | 579.135 |
| Altri autori (Persone) | SolankiManoj Kumar |
| Collana | Microorganisms for Sustainability |
| Soggetto topico |
Microbial genetics
Microbial populations Microbial ecology Microbiology - Technique Microbial Genetics Microbial Communities Environmental Microbiology Microbiology Techniques Microbial Ecology |
| ISBN | 9789819787395 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Microbial consortia an approach in Plant Growth Promotion and plant diseases management -- Chapter 2. Microbes Associated Activation of Plant Defense against Phytopathogens -- Chapter 3. Impact of Environmental Factors on Microbial Association with Plant -- Chapter 4. Role of Endophytic microbes for post-harvest diseases management -- Chapter 5. Utilization of Rice Husk-Derived Silica in Fertilizer and Pesticide Formulation -- Chapter 6. An application of biopesticides in control of pest and crop protection; an eco-friendly management -- Chapter 7. Beneficial Microbes in Agriculture: Recent Development and Outlook -- Chapter 8. CRISPR/Cas9-based Genome Engineering In Plants For Enhancing Disease Resistance -- Chapter 9. Biocontrol Mechanisms by Root-Associated Bacillus Species -- Chapter 10. Cyanobacteria as mediators of systematic resistance for sustainable disease control in agriculture -- Chapter 11. Microbial inoculants for the management of pesticide toxicity in plants -- Chapter 12. Screening of microbial biocontrol agents using traditional and insilico approaches -- Chapter 13. Talaromyces spp. are promising Biocontrol Agents for Sustainable Agriculture -- Chapter 14. Metagenomics: Unveiling Microbial Communities Theme -- Chapter 15. Antimicrobial resistance: Introduction and Challenges -- Chapter 16. Multifunctional nanocomposites enhance biotherapeutics sensitivity in replication associated diseases -- Chapter 17. Blockchain Technology for Environmental Conservation -- Chapter 18. Exploring Host Immunity and Virulence in Mucorales. |
| Record Nr. | UNINA-9910951799003321 |
Kumar Ajay
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Numerical simulation of scramjet inlet flow fields / / Ajay Kumar
| Numerical simulation of scramjet inlet flow fields / / Ajay Kumar |
| Autore | Kumar Ajay |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, Scientific and Technical Information Branch, , May 1986 |
| Descrizione fisica | 1 online resource (26 pages) : illustrations |
| Collana | NASA/TP |
| Soggetto topico |
Computational fluid dynamics
Inlet flow Turbulent flow Mach number Three dimensional flow |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910709877503321 |
Kumar Ajay
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, Scientific and Technical Information Branch, , May 1986 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Processing and Fabrication of Advanced Materials, Volume 2 : Proceedings of the 29th International Conference on Processing and Fabrication of Advanced Materials (29th PFAM) September 6–8, 2023 / / edited by Ajay Kumar, T. S. Srivatsan, Mamilla Ravi Sankar, N. Venkaiah, S. Seetharamu
| Processing and Fabrication of Advanced Materials, Volume 2 : Proceedings of the 29th International Conference on Processing and Fabrication of Advanced Materials (29th PFAM) September 6–8, 2023 / / edited by Ajay Kumar, T. S. Srivatsan, Mamilla Ravi Sankar, N. Venkaiah, S. Seetharamu |
| Autore | Kumar Ajay |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (584 pages) |
| Disciplina | 620.1 |
| Altri autori (Persone) |
SrivatsanT. S
Ravi SankarMamilla VenkaiahN SeetharamuS |
| Collana | Springer Proceedings in Materials |
| Soggetto topico |
Materials
Catalysis Force and energy Biomaterials Materials for Energy and Catalysis Materials for Devices |
| ISBN |
9789819759637
9819759633 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Maglev Electric Discharge Machine (MEDM): Design and Development -- Micromachining of NiTi SMA Composite Bimorph for Smart Actuators using a CO2 Laser -- Determining Impact Strength of Extrusion Based 3D Printed PEEK using Multi-Criteria Decision Making (MCDM) -- Experimental Investigation on Metallurgical and Mechanical Properties of ND:YAG Laser Welded Inconel-825 Superalloy -- Geometric Form Errors in Hollow Cylindrical Parts Manufactured by Powder Bed Fusion -- Investigation on Multi-Tool Machining of Ag using μ-EDM -- Nanotechnology and Additive Manufacturing, an Integration: A Review -- Experimental Investigation on MRR in Wire-EDM Machining S31803 Profile Surface with Different Currents -- Investigation of Mechanical Properties and Tribological Performance of Al-B4C Metal Matrix Composites -- Tool Wear and Surface Roughness Evaluation during Drilling and Helical Milling in Ti6Al4V Titanium Alloy -- Influence of Tool Rotational Speed on the Mechanical Properties of Friction Stir Spot Welded AA5052-H32/PU-foam/AA5052-H32 Sandwich Sheets -- The State of the Art on Properties Enhancement by Post Heat Treatment of WAAM Fabricated Alloys -- Effect of Cell Wall Thickness and Heat Treatment on Overall Compressive Strength of Honeycomb Structure Made of PETG and PLA Fabricated by FDM -- Microstructure and Non-Destructive Evaluation of Aluminium 6009 Alloy Sheets Joined by Friction Stir Welding -- Effect of Process Parameters on Track Geometry and Porosity in Laser Direct Energy Deposition of High Strength Aluminium Alloy. |
| Record Nr. | UNINA-9910906191803321 |
Kumar Ajay
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smart Electric and Hybrid Vehicles : Advancements in Materials, Design, Technologies, and Modeling
| Smart Electric and Hybrid Vehicles : Advancements in Materials, Design, Technologies, and Modeling |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (315 pages) |
| Disciplina | 629.22/93 |
| Altri autori (Persone) |
KumarParveen
Sudha LethaShimi TariqMohd SarwatArif I |
| Soggetto topico |
Electric vehicles - Design and construction
Hybrid electric vehicles - Design and construction |
| ISBN |
9781394225026
1394225024 9781394225040 1394225040 9781394225033 1394225032 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911018814903321 |
Kumar Ajay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||