top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biosystems, Biomedical and Drug Delivery Systems : Characterization, Restoration and Optimization
Biosystems, Biomedical and Drug Delivery Systems : Characterization, Restoration and Optimization
Autore Kulkarni Shrikaant
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (376 pages)
Altri autori (Persone) HaghiA. K
ManwatkarSonali
ISBN 9789819725960
9789819725953
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- Abbreviations -- List of Figures -- 1 Editorial: Future of Novel Technologies in Biosystems, Biomedical, and Drug Delivery -- 1.1 Nature and Characterization of Biosystems -- 1.2 Restoration of Biological Functions -- 1.3 Optimization of Drug Delivery -- 1.4 Conclusion -- Part I Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Characterization -- 2 Characterization Tools for Current Drug Delivery Systems -- 2.1 Introduction -- 2.2 Techniques Employed in Characterizing Drug Delivery Systems -- 2.3 Determination of Particle Size -- 2.3.1 Utilizing Dynamic Light Scattering (DLS)/Photon Correlation Spectroscopy (PCS) Technique -- 2.3.2 Single-Particle Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) -- 2.4 Microscopic Characterization Techniques -- 2.4.1 Scanning Electron Microscopy (SEM) -- 2.4.2 Environmental Scanning Electron Microscopy (ESEM) -- 2.4.3 Field Emission Scanning Electron Microscopy (FESEM) -- 2.4.4 Transmission Electron Microscopy (TEM) -- 2.4.5 Confocal Laser Scanning Microscopy (CLSM) -- 2.4.6 Atomic Force Microscopy (AFM) -- 2.5 Compatibility Studies (Physical-Chemical Characterization) -- 2.5.1 Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) -- 2.5.2 X-Ray Powder Diffraction (XRPD) -- 2.6 Fourier Transform Infrared Spectroscopy (FTIR) -- 2.7 Limitations of Existing Characterization Techniques -- 2.7.1 Dynamic Light Scattering (DLS)/Photon Correlation Spectroscopy (PCS) -- 2.7.2 Single-Particle Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) -- 2.7.3 Scanning Electron Microscopy (SEM) -- 2.7.4 Environmental Scanning Electron Microscopy (ESEM) -- 2.7.5 Field Emission Scanning Electron Microscopy (FESEM) -- 2.7.6 Transmission Electron Microscopy (TEM) -- 2.7.7 Confocal Laser Scanning Microscopy (CLSM) -- 2.7.8 Atomic Force Microscopy (AFM).
2.7.9 Differential Scanning Calorimetry (DSC)/Thermogravimetry (TG) -- 2.7.10 X-Ray Powder Diffraction (XRPD) -- 2.7.11 Fourier Transform Infrared Spectroscopy (FTIR) -- 2.8 Discussion -- References -- 3 Characterization of Transdermal Drug Delivery Systems: Retrospect and Future Prospects -- 3.1 Introduction -- 3.2 Historical Perspective -- 3.2.1 Early Transdermal Patches -- 3.2.2 Milestones in TDDS Evolution -- 3.3 Challenges in Transdermal Drug Delivery -- 3.3.1 Skin Barrier -- 3.3.2 Dose Limitations -- 3.3.3 Adhesion and Irritation -- 3.3.4 Variable Absorption -- 3.4 Future Prospects -- 3.4.1 Nanotechnology -- 3.4.2 Personalized TDDS -- 3.4.3 Biologics and Vaccines -- 3.4.4 Sustainable Materials -- 3.4.5 Continuous Monitoring -- 3.5 Synergistic Potential and the Challenges of Transdermal Drug Delivery System with Artificial Intelligence (AI) -- 3.5.1 Enhanced Drug Formulation and Design -- 3.5.2 Personalized Medicine -- 3.5.3 Predictive Modeling -- 3.5.4 Feedback Mechanisms -- 3.5.5 Data-Driven Optimization -- 3.5.6 Challenges and Considerations -- 3.6 Conclusion -- References -- 4 Analytical Tools for the Characterization of Nasal Spray Drug Products -- 4.1 Introduction -- 4.2 Physical Tests -- 4.2.1 Pump Delivery (Shot Weight) -- 4.2.2 Number of Actuations/Containers -- 4.2.3 Viscosity -- 4.2.4 Net Fill Content and Minimum Fill Justification -- 4.2.5 Osmolality -- 4.2.6 Priming and Repriming Study -- 4.2.7 Surface Tension -- 4.3 Nasal Spray Characterization Tests -- 4.3.1 Droplet Size Distribution (DSD) -- 4.3.2 Spray Pattern (SP) -- 4.4 Plume Geometry (PG) -- 4.4.1 Method Precision -- 4.4.2 Intermediate Precision -- 4.4.3 Robustness -- 4.5 Chemical Tests -- 4.5.1 Assay -- 4.5.2 Related Substances -- 4.5.3 Preservative Content -- 4.6 Conclusion -- References -- Part II Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Restoration.
5 AI-Enabled Models in the Restoration of Drug Efficacy and Drug Design -- 5.1 Introduction -- 5.2 Traditional Drug Discovery Process: Challenges and Limitations -- 5.3 The Emergence of AI in Drug Discovery and Design -- 5.4 Data Collection and Management -- 5.5 Target Identification and Validation -- 5.5.1 Systematic Analysis of Biological Datasets -- 5.5.2 Precision in Target Selection -- 5.5.3 Reducing Late-Stage Failures -- 5.5.4 Streamlining Drug Development -- 5.6 Molecular Modeling and in Silico Drug Design -- 5.6.1 Enhanced Accuracy and Speed -- 5.6.2 Efficient Drug Candidate Assessment -- 5.6.3 Reducing Time and Resource Investment -- 5.6.4 Tailored Therapeutics -- 5.6.5 Iterative Improvement -- 5.7 High-Throughput Screening and Compound Selection -- 5.7.1 AI-Powered Robotic Systems -- 5.7.2 Machine Learning Algorithms -- 5.7.3 The Advantages of AI in Compound Selection -- 5.7.4 Comprehensive Screening of Compound Libraries -- 5.8 Predictive Toxicology and ADMET Evaluation -- 5.8.1 Traditional Challenges in Predictive Toxicology and ADMET Evaluation -- 5.8.2 The Role of AI in Predictive Toxicology -- 5.8.3 Optimizing ADMET Evaluation with AI -- 5.8.4 The Advantages of AI in Predictive Toxicology and ADMET Evaluation -- 5.9 Clinical Trial Optimization -- 5.9.1 Efficient Patient Recruitment -- 5.9.2 Personalized Trial Matching -- 5.9.3 Adaptive Clinical Trials -- 5.9.4 Enhanced Data Analysis -- 5.9.5 Benefits and Implications -- 5.10 Ethical and Regulatory Considerations -- 5.10.1 Ethical Considerations in AI-Driven Drug Discovery -- 5.10.2 Regulatory Challenges in an AI-Driven Landscape -- 5.10.3 Building Trust and Accountability -- 5.11 Challenges and Future Directions -- 5.12 Conclusions -- References -- 6 Restoration and Sustenance of Nano Drug Delivery Systems: Potential, Challenges, and Limitations -- 6.1 Introduction.
6.2 Conventional Drug Delivery Systems: Challenges and Limitations -- 6.2.1 Microspheres -- 6.2.2 Gels -- 6.2.3 Prodrugs -- 6.3 New Drug Carriers Systems -- 6.3.1 Polymeric Nanoparticles -- 6.3.2 Metal Nanoparticles and Quantum Dots -- 6.3.3 Micro and Nanosponges -- 6.3.4 Microsponges -- 6.3.5 Nanosponges -- 6.3.6 Vesicular System -- 6.3.7 Solid Lipid Nanoparticles (SLNs) -- 6.3.8 Nano-structured Lipid Carriers -- 6.3.9 Microemulsions -- 6.3.10 Nanoemulsions -- 6.3.11 Immunoconjugates -- 6.3.12 "In Situ Gel Drug Delivery System" -- 6.4 Challenges and Future Directions -- 6.5 Conclusion -- References -- 7 Artificial Intelligence and Machine Learning in Restoring and Strengthening HealthCare -- 7.1 Introduction to ML and AI -- 7.2 Tasks Machine Learning Can Handle Within Health Care -- 7.3 Opportunities and Prospects of Machine Learning Provides for Healthcare -- 7.4 Health Care Advantages of Machine Learning -- 7.5 Potential Applications of ML in Healthcare -- 7.5.1 Clinical Decision Support Systems (CDSS) -- 7.5.2 Smart Recordkeeping -- 7.5.3 Machine Learning in Medical Imaging -- 7.5.4 Personalized Medicine -- 7.5.5 Behavior Adjustments -- 7.5.6 Predictive Approach to Treatment -- 7.5.7 Data Collection -- 7.5.8 Elderly and Low-Mobility Groups Care -- 7.5.9 Robotic Surgery -- 7.6 Ethics of Employing ML in Healthcare -- 7.6.1 Data Security and Privacy -- 7.6.2 Issues with Autonomy -- 7.6.3 Patient Safety -- 7.6.4 Clear Communication and Informed Consent -- 7.6.5 Inclusion and Representation -- 7.7 ML Problems Within the Healthcare Sector -- 7.7.1 Inadequacy of Reliable Data to Develop Accurate Algorithms -- 7.7.2 Creating ML Tools that Are Compliant with Medical Workflow -- 7.7.3 Building Teams with Diverse Skill Sets in One Location -- 7.8 Future Scope -- References.
Part III Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Optimization -- 8 Optimizing Oncology Tools: Organ-On-A-Clip Alternative to Animal Model -- 8.1 Introduction -- 8.2 Oncology: Challenges and Constraints in Drug Development -- 8.3 Primer for the Organ-On-A-Chip (OoC) -- 8.3.1 Drug Screening and Development -- 8.3.2 Personalized Medicine -- 8.3.3 Microenvironment Replication -- 8.3.4 Metastasis Studies -- 8.3.5 Evaluation of Therapeutic Resistance -- 8.3.6 Reducing Dependency on Animal Models -- 8.3.7 Integration with Microfluidics -- 8.4 Design of OoC Devices -- 8.5 OoCs Based Platforms for Novel Drug Development -- 8.6 Microfluidic Systems in Cancer Investigation -- 8.7 Utilizing Microfluidics for Isolation of Circulating Tumour Cell (CTC) -- 8.8 Application of Microfluidic Platforms for Analysis of Cancer Cell Phenotype -- 8.9 Device for Exploring Metastasis Using Microfluidics -- 8.10 The Implementation Process of Constructing the Tumor Microenvironment -- 8.11 Conclusion -- References -- 9 Optimizing Drug Synthesis: AI-Powered Kinetics Study in Pharmaceutical Research -- 9.1 Introduction -- 9.1.1 The Evolution of AI and ML in Drug Discovery -- 9.1.2 The Role of Kinetics in Drug Synthesis -- 9.2 Foundations of AI and ML in Drug Synthesis -- 9.2.1 Machine Learning Algorithms for Kinetics Prediction -- 9.2.2 Data Sources and Data Preprocessing -- 9.2.3 Model Validation and Performance Metrics -- 9.3 Predicting Reaction Rates -- 9.3.1 AI/ML Models for Reaction Rate Prediction -- 9.3.2 Reaction Mechanism and Rate-Determining Steps -- 9.3.3 Case Studies Related to Reaction Rate Prediction -- 9.4 Optimizing Reaction Conditions -- 9.4.1 Optimizing Techniques and Algorithms -- 9.4.2 Bayesian Optimization in Drug Synthesis -- 9.5 Understanding Reaction Mechanisms -- 9.5.1 Deep Learning Approaches to Reaction Mechanism Elucidation.
9.5.2 Reaction Pathways and Transition State Modeling.
Record Nr. UNINA-9910865242803321
Kulkarni Shrikaant  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Global Sustainability : Trends, Challenges and Case Studies
Global Sustainability : Trends, Challenges and Case Studies
Autore Kulkarni Shrikaant
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (299 pages)
Altri autori (Persone) HaghiA. K
Collana World Sustainability Series
ISBN 3-031-57456-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- Abbreviations -- List of Figures -- Global Sustainability: Trends -- Editorial: Global Sustainability: Trends, Challenges, and Case Studies -- 1 Trends and Challenges in Global Sustainability -- 2 Case Studies in Global Sustainability -- 3 Conclusion -- Emerging Trends in Sustainability: A Conceptual Exploration -- 1 Introduction -- 1.1 Background and Rationale -- 2 Defining Sustainability -- 2.1 History of the Emergence of Sustainability -- 2.2 Definitions of Sustainability -- 2.3 The Evolving Notion of Sustainability -- 3 Related Work on Sustainability -- 4 Contemporary Challenges -- 5 Trends in Sustainability -- 6 Future Directions in Sustainability -- 7 Conclusion -- References -- Sustainable Solutions to Combat Soil Erosion Using Biogenic Agents -- 1 Introduction -- 2 Soil Erosion and Its Impact on the Environment -- 2.1 Carbon Storage -- 2.2 Nutrient Cycle -- 2.3 Water Cycle -- 2.4 Habitat -- 3 Soil Change-Drivers and Trends -- 4 Popular Structural Interventions to Combat Soil Erosion and Their Impact on the Environment -- 4.1 Check Dams -- 4.2 Sediment Traps -- 4.3 Unstainable Agriculture Practices -- 5 Biological Methods to Control Soil Erosion -- 5.1 Vegetative Cover -- 5.2 Biopolymers -- 5.3 Biochar -- 6 Conclusions -- References -- Circular Economy for Sustainable Development in India -- 1 Introduction -- 2 Sustainable Development Goals (SDGs) in India -- 2.1 No Poverty -- 2.2 Zero Hunger -- 2.3 Good Health and Well-Being -- 2.4 Quality Education -- 2.5 Gender Equality -- 2.6 Clean Water and Sanitation -- 2.7 Affordable and Clean Energy -- 2.8 Decent Work and Economic Growth -- 2.9 Industry, Innovation, and Infrastructure -- 2.10 Reduced Inequality -- 2.11 Sustainable Cities and Communities -- 2.12 Responsible Consumption and Production -- 2.13 Climate Action -- 2.14 Life Below Water.
2.15 Life on Land -- 2.16 Peace, Justice, and Strong Institutions -- 2.17 Partnerships for the Goals -- 3 Resource Challenges in India -- 3.1 Water Scarcity and Quality -- 3.2 Energy Security and Transition -- 3.3 Land Use and Degradation -- 3.4 Mineral Resource Management -- 3.5 Waste Management -- 3.6 Air Pollution -- 3.7 Conservation of Biodiversity -- 3.8 Climate Change Impacts -- 4 Circular Economy Practices -- 4.1 Design for Durability and Repairability -- 4.2 Reuse and Refurbishment -- 4.3 Remanufacturing -- 4.4 Recycling and Upcycling -- 4.5 Resource Recovery and Regeneration -- 4.6 Product-as-a-Service Models -- 4.7 Sharing Economy and Collaborative Consumption -- 4.8 Waste Reduction and Minimalism -- 4.9 Extended Producer Responsibility (EPR) -- 4.10 Digitalization and Circular Business Models -- 4.11 Green Procurement and Supply Chain Optimization -- 4.12 Education and Awareness -- 5 Economic Benefits -- 5.1 Cost Savings and Resource Efficiency -- 5.2 Job Creation and Economic Growth -- 5.3 Market Diversification and Innovation -- 5.4 Resource Security and Reduced Dependency -- 5.5 Lower Environmental Externalities -- 5.6 Enhanced Competitiveness and Market Access -- 5.7 Resilience to Supply Chain Disruptions -- 6 Sector-Specific Analysis -- 6.1 Manufacturing and Production -- 6.2 Retail and Consumer Goods -- 6.3 Construction and Built Environment -- 7 Environmental Impacts -- 7.1 Reduced Resource Depletion -- 7.2 Energy Conservation -- 7.3 Lower Greenhouse Gas Emissions -- 7.4 Waste Reduction and Diversion -- 7.5 Improved Air and Water Quality -- 7.6 Conservation of Biodiversity and Ecosystem Services -- 7.7 Mitigation of Land Degradation -- 7.8 Reduced Environmental Pollution -- 7.9 Resilience to Climate Change -- 7.10 Water Conservation and Quality -- 8 Policy and Regulation -- 8.1 Extended Producer Responsibility (EPR).
8.2 Waste Management and Recycling Targets -- 8.3 Circular Public Procurement -- 8.4 Tax Incentives and Subsidies -- 8.5 Regulation of Hazardous Materials and Chemicals -- 9 Consumer Awareness and Education -- 9.1 Understanding Circular Economy Principles -- 9.2 Product Labeling and Certification -- 9.3 Promoting Sustainable Consumption Patterns -- 9.4 Engaging in Repair and Upcycling -- 9.5 Raising Awareness About Waste Management -- 9.6 Advocating for Circular Business Models -- 9.7 Showcasing Success Stories and Role Models -- 9.8 Leveraging Digital Platforms and Technology -- 9.9 Collaboration and Partnerships -- 10 Challenges and Barriers -- 10.1 Lack of Consumer Awareness and Engagement -- 10.2 Limited Availability of Circular Products and Services -- 10.3 Inadequate Infrastructure and Technology -- 10.4 Regulatory and Policy Challenges -- 10.5 Economic and Financial Barriers -- 10.6 Resistance to Change in Business Models -- 10.7 Complex Supply Chains and Globalization -- 10.8 Limited Access to Recycled Materials -- 10.9 Cultural and Behavioral Shifts -- 10.10 Lack of Data and Measurement Tools -- 11 Circular Business Models -- 11.1 Product-as-a-Service (PaaS) -- 11.2 Remanufacturing and Refurbishment -- 11.3 Sharing and Collaborative Consumption -- 11.4 Closed-Loop Recycling -- 11.5 Waste-to-Resource Conversion -- 12 Conclusion -- 13 Recommendations -- References -- Evaluation of Sustainability Practices in Higher Education: A Study on Assessment Tools GASU and AISHE -- 1 Introduction -- 2 Literature Review -- 3 Research Methodology -- 4 Findings -- 5 Conclusions and Recommendations -- References -- Global Sustainability: Challenges -- Soil Conservation for Global Sustainability -- 1 Introduction -- 2 Fundamentals of Soil Conservation -- 3 Threats to Soil Health -- 4 Strategies for Soil Conservation -- 5 Policy and Regulation.
6 Case Studies -- 7 Future Challenges and Opportunities -- 8 Conclusion -- References -- Designing a Framework for Sustainable Supply Chain Management of Coal Transportation -- 1 Introduction -- 2 Finding Sustainable Challenges Due to the Coal Supply Chain -- 2.1 Use of Multicriteria Decision-Making Methods to Prioritize/ Rank the Most Important Challenges -- 2.2 Use of Quality Function Deployment to Design a Framework -- 3 Methodology -- 3.1 Questionnaire Survey -- 3.2 Factor Analysis and ARAS Method -- 3.3 Quality Function Deployment -- 4 Results and Discussion -- 4.1 Factor Analysis -- 4.2 MCDM ARAS Method -- 4.3 Quality Function Deployment -- 5 Conclusions -- References -- Workplace Wellbeing of LGBT Individuals: Impact on Sustainability -- 1 Introduction -- 1.1 Understanding Workplace Wellbeing of LGBT Employees -- 1.2 Components of Workplace Wellbeing -- 1.3 Significance of LGBT Employees' Workplace Wellbeing -- 2 Formulation of the Research Questions -- 3 Methodology -- 3.1 Systematic Search Strategies -- 4 Timeline of Selected Articles -- 5 Country-wise Distribution of Selected Studies -- 6 Thematic Discussion of Findings -- 6.1 Theoretical Perspectives -- 6.2 Challenges Faced by LGBT Employees at Workplace -- 6.3 Mental Health Outcomes -- 6.4 Career Advancement Opportunities -- 6.5 Strategies for Improving Workplace Wellbeing Among LGBT Employees -- 6.6 Research Gaps and Future Directions -- 7 APAR: The Tool for Implementing Workplace Wellbeing for LGBT Employees -- 8 Future Scope of the Study -- 9 Limitations and Conclusion -- 10 Implications of the Study -- References -- Global Sustainability: Case Studies -- Impact of Urban Expansion on Urban Heat: A Case Study of Greater London -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Study Area -- 3.2 Methods -- 4 Result.
4.1 Changes in LULC Types in the Study Area Between 2000 and 2022 -- 4.2 Land Use Land Cover Classification Accuracy Assessment -- 4.3 LST Analysis -- 5 Discussion -- 6 Conclusion and Recommendation -- 6.1 Conclusion -- 6.2 Recommendation -- References -- Sustainable Cassava: A Case Study of Global Sustainability -- 1 Introduction -- 2 Selection of Adaptation Practices Against Climate Change -- 3 Impact of Farming Practices Amenable to Climate Change -- 4 Cassava Production -- 4.1 Global Production -- 4.2 Production Efficiency -- 4.3 Impact of Cassava Production on Environment and Agriculture -- 4.4 Statistics on Cassava Recovery -- 5 Conclusion -- 6 Policy Recommendations -- References -- Case Studies in Sustainable Business Management in India -- 1 Introduction -- 2 The Case Studies -- 2.1 Tata Power: Pioneering Renewable Energy -- 2.2 Godrej Consumer Products: Embracing Sustainable Manufacturing -- 2.3 ITC: Championing Sustainable Sourcing -- 2.4 Mahindra and Mahindra: Transforming Mobility -- 2.5 Dalmia Cement: A Pioneer in Sustainable Cement Manufacturing -- 2.6 Infosys: Embracing Sustainable IT Practices -- 2.7 Dabur: Championing Sustainable Ayurveda -- 2.8 Hero MotoCorp: Pioneering Sustainable Mobility Solutions -- References -- Role of Agricultural Science Centres in Attaining Sustainability in India: A Case Study -- 1 Introduction -- 2 Concept and Genesis of Agricultural Science Centre in India -- 3 Role of Agricultural Science Centres in Attaining Agricultural Sustainability -- 4 Impact of Interventions of Agricultural Science Centre on Agricultural Sustainability: A Case Study of Selected KVKS in Western Maharashtra -- 4.1 Materials and Methods -- 4.2 Parameters Used for the Study -- 4.3 Results and Discussion -- 5 Conclusion -- References -- Collective Action for Transformative Change: The Case of Helston Climate Action Group (UK).
1 Introduction.
Record Nr. UNINA-9910864200903321
Kulkarni Shrikaant  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui