top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations [[electronic resource] /] / by Grigorij Kulinich, Svitlana Kushnirenko, Yuliya Mishura
Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations [[electronic resource] /] / by Grigorij Kulinich, Svitlana Kushnirenko, Yuliya Mishura
Autore Kulinich Grigorij
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XV, 240 p. 4 illus., 2 illus. in color.)
Disciplina 519.2
Collana Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics
Soggetto topico Probabilities
Dynamics
Ergodic theory
Differential equations
Functional analysis
Partial differential equations
Probability Theory and Stochastic Processes
Dynamical Systems and Ergodic Theory
Ordinary Differential Equations
Functional Analysis
Partial Differential Equations
ISBN 3-030-41291-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Unstable Processes and Their Asymptotic Behavior -- Convergence of Unstable Solutions of SDEs to Homogeneous Markov Processes with Discontinuous Transition Density -- Asymptotic Analysis of Equations with Ergodic and Stochastically Unstable Solutions -- Asymptotic Behavior of Integral Functionals of Stochastically Unstable Solutions -- Asymptotic Behavior of Homogeneous Additive Functionals Defined on the Solutions of Itô SDEs with Non-regular Dependence on a Parameter -- Asymptotic Behavior of Homogeneous Additive Functionals of the Solutions to Inhomogeneous Itô SDEs with Non-regular Dependence on a Parameter -- A Selected Facts and Auxiliary Results -- References.
Record Nr. UNISA-996418186803316
Kulinich Grigorij  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations / / by Grigorij Kulinich, Svitlana Kushnirenko, Yuliya Mishura
Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations / / by Grigorij Kulinich, Svitlana Kushnirenko, Yuliya Mishura
Autore Kulinich Grigorij
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XV, 240 p. 4 illus., 2 illus. in color.)
Disciplina 519.2
Collana Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics
Soggetto topico Probabilities
Dynamics
Ergodic theory
Differential equations
Functional analysis
Partial differential equations
Probability Theory and Stochastic Processes
Dynamical Systems and Ergodic Theory
Ordinary Differential Equations
Functional Analysis
Partial Differential Equations
ISBN 3-030-41291-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Unstable Processes and Their Asymptotic Behavior -- Convergence of Unstable Solutions of SDEs to Homogeneous Markov Processes with Discontinuous Transition Density -- Asymptotic Analysis of Equations with Ergodic and Stochastically Unstable Solutions -- Asymptotic Behavior of Integral Functionals of Stochastically Unstable Solutions -- Asymptotic Behavior of Homogeneous Additive Functionals Defined on the Solutions of Itô SDEs with Non-regular Dependence on a Parameter -- Asymptotic Behavior of Homogeneous Additive Functionals of the Solutions to Inhomogeneous Itô SDEs with Non-regular Dependence on a Parameter -- A Selected Facts and Auxiliary Results -- References.
Record Nr. UNINA-9910483172303321
Kulinich Grigorij  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui