top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Heavy-Tailed Time Series [[electronic resource] /] / by Rafal Kulik, Philippe Soulier
Heavy-Tailed Time Series [[electronic resource] /] / by Rafal Kulik, Philippe Soulier
Autore Kulik Rafal
Edizione [1st ed. 2020.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIX, 681 p. 7 illus., 5 illus. in color.)
Disciplina 519.24
Collana Springer Series in Operations Research and Financial Engineering
Soggetto topico Probabilities
Statistics 
Applied mathematics
Engineering mathematics
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Applications of Mathematics
ISBN 1-0716-0737-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular variation -- Regularly varying random variables -- Regularly varying random vectors -- Dealing with extremal independence -- Regular variation of series and random sums -- Regularly varying time series -- Limit theorems -- Convergence of clusters-. Point process convergence -- Convergence to stable and extremal processes -- The tall empirical and quantile processes -- Estimation of cluster functionals -- Estimation for extremally independent time series -- Bootstrap -- Time series models -- Max-stable processes -- Markov chains -- Moving averages -- Long memory processes -- Appendices. .
Record Nr. UNINA-9910484135703321
Kulik Rafal  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heavy-Tailed Time Series [[electronic resource] /] / by Rafal Kulik, Philippe Soulier
Heavy-Tailed Time Series [[electronic resource] /] / by Rafal Kulik, Philippe Soulier
Autore Kulik Rafal
Edizione [1st ed. 2020.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIX, 681 p. 7 illus., 5 illus. in color.)
Disciplina 519.24
Collana Springer Series in Operations Research and Financial Engineering
Soggetto topico Probabilities
Statistics 
Applied mathematics
Engineering mathematics
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Applications of Mathematics
ISBN 1-0716-0737-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular variation -- Regularly varying random variables -- Regularly varying random vectors -- Dealing with extremal independence -- Regular variation of series and random sums -- Regularly varying time series -- Limit theorems -- Convergence of clusters-. Point process convergence -- Convergence to stable and extremal processes -- The tall empirical and quantile processes -- Estimation of cluster functionals -- Estimation for extremally independent time series -- Bootstrap -- Time series models -- Max-stable processes -- Markov chains -- Moving averages -- Long memory processes -- Appendices. .
Record Nr. UNISA-996418273703316
Kulik Rafal  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui