top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemical master equation for large biological networks : state-space expansion methods using AI / / Don Kulasiri, Rahul Kosarwal
Chemical master equation for large biological networks : state-space expansion methods using AI / / Don Kulasiri, Rahul Kosarwal
Autore Kulasiri Don
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (231 pages)
Disciplina 574.192
Soggetto topico Biochemistry
Systems biology
ISBN 981-16-5351-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Abbreviations -- Terminology -- Notations -- Key Factors and Outputs -- 1 Introduction -- 1.1 Chemical Kinetics and Stochastic Processes -- 1.2 Why Stochastic Processes? -- 1.2.1 Introduction -- 1.2.2 Fluctuations in Biological Systems -- 1.2.3 Experimental Observations -- 1.2.4 Advantages of Stochasticity -- 1.2.5 Thermodynamics of Biological Networks Far from Equilibrium -- 1.2.6 Why Stochastic Fluctuation Modelling? -- 1.2.7 Stochastic Modelling Methods -- 1.2.8 Theoretical Thermodynamic Modelling Approaches -- 1.2.9 Oscillatory Systems -- 1.3 The Purpose of This Book -- 1.4 Specific Objectives of the Monograph -- 1.5 The Organization of the Book -- References -- 2 A Review and Challenges in Chemical Master Equation -- 2.1 Markov Processes -- 2.2 Derivation of Chemical Master Equation -- 2.3 Adaptation of CME to Biological Networks -- 2.4 Generation-Recombination Markov Processes -- 2.5 Existing State-Space Expansion Methods -- 2.5.1 R-step Reachability Method -- 2.5.2 Stochastic Simulation Methods -- 2.6 Existing Numerical Methods for Approximation -- 2.6.1 Uniformisation Method -- 2.6.2 Krylov Subspace -- 2.7 Toy Biochemical Models -- 2.8 Conclusions -- Appendix A: Basic Probability -- References -- 3 Visualizing Markov Process Through Graphs and Trees -- 3.1 Introduction -- 3.1.1 Definitions and Preliminaries -- 3.2 Finite State Markov Chains as Sample Space -- 3.2.1 Sample Space for Biochemical Systems -- 3.2.2 States Classification of Markov Chain for Biochemical System -- 3.3 Markov Chain as a Markov Chain Tree -- 3.4 Problem State-Space Model of Biochemical Networks -- 3.5 Intelligent Search and Tracking -- 3.5.1 Artificial Intelligence for CME -- 3.5.2 Bayesian Likelihood Node Projection Function -- 3.6 Complexity of Optimal Solutions -- 3.7 Discussion and Conclusions -- References.
4 Intelligent State Projection -- 4.1 Introduction -- 4.2 Derivation of the Method Conditions -- 4.2.1 Expansion Criterion for States Space -- 4.2.2 Cease of Criterion After Updating -- 4.3 Latitudinal Search Strategy -- 4.3.1 Expansion and Update -- 4.3.2 Biological Example -- 4.4 Longitudinal Latitudinal Search -- 4.4.1 Expansion and Update -- 4.4.2 Biological Example -- 4.5 Data Structure Complexity of Operations -- 4.6 Discussion and Conclusion -- Appendix A.1 Complexity Based on Operations -- References -- 5 Comparative Study and Analysis of Methods and Models -- 5.1 Study Overview -- 5.2 Comparison Based on Catalytic Reaction System -- 5.3 Comparison Based on the Dual Enzymatic Reaction Network -- 5.4 Discussion and Conclusion -- References -- 6 A Large Model Case Study: Solving CME for G1/S Checkpoint Involving the DNA-Damage Signal Transduction Pathway -- 6.1 Introduction -- 6.1.1 What Happens in Normal Conditions? -- 6.1.2 What Happens in the Presence of a DNA-Damage Signal? -- 6.2 Model Integration -- 6.3 Computational Experiments -- 6.4 Discussion and Summary -- References -- 7 An Integrated Large Model Case Study: Solving CME for Oxidative Stress Adaptation in the Fungal Pathogen Candida Albicans -- 7.1 Introduction -- 7.1.1 Integrated Model Overview -- 7.2 Model Integration -- 7.2.1 Transporter Module -- 7.2.2 Antioxidant Module -- 7.2.3 Protein-Thiol Module -- 7.2.4 Signaling and Gene Expression Module -- 7.3 Computational Experiments -- 7.4 Discussion and Summary -- References.
Record Nr. UNISA-996466729303316
Kulasiri Don  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Chemical master equation for large biological networks : state-space expansion methods using AI / / Don Kulasiri, Rahul Kosarwal
Chemical master equation for large biological networks : state-space expansion methods using AI / / Don Kulasiri, Rahul Kosarwal
Autore Kulasiri Don
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (231 pages)
Disciplina 574.192
Soggetto topico Biochemistry
Systems biology
ISBN 981-16-5351-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Abbreviations -- Terminology -- Notations -- Key Factors and Outputs -- 1 Introduction -- 1.1 Chemical Kinetics and Stochastic Processes -- 1.2 Why Stochastic Processes? -- 1.2.1 Introduction -- 1.2.2 Fluctuations in Biological Systems -- 1.2.3 Experimental Observations -- 1.2.4 Advantages of Stochasticity -- 1.2.5 Thermodynamics of Biological Networks Far from Equilibrium -- 1.2.6 Why Stochastic Fluctuation Modelling? -- 1.2.7 Stochastic Modelling Methods -- 1.2.8 Theoretical Thermodynamic Modelling Approaches -- 1.2.9 Oscillatory Systems -- 1.3 The Purpose of This Book -- 1.4 Specific Objectives of the Monograph -- 1.5 The Organization of the Book -- References -- 2 A Review and Challenges in Chemical Master Equation -- 2.1 Markov Processes -- 2.2 Derivation of Chemical Master Equation -- 2.3 Adaptation of CME to Biological Networks -- 2.4 Generation-Recombination Markov Processes -- 2.5 Existing State-Space Expansion Methods -- 2.5.1 R-step Reachability Method -- 2.5.2 Stochastic Simulation Methods -- 2.6 Existing Numerical Methods for Approximation -- 2.6.1 Uniformisation Method -- 2.6.2 Krylov Subspace -- 2.7 Toy Biochemical Models -- 2.8 Conclusions -- Appendix A: Basic Probability -- References -- 3 Visualizing Markov Process Through Graphs and Trees -- 3.1 Introduction -- 3.1.1 Definitions and Preliminaries -- 3.2 Finite State Markov Chains as Sample Space -- 3.2.1 Sample Space for Biochemical Systems -- 3.2.2 States Classification of Markov Chain for Biochemical System -- 3.3 Markov Chain as a Markov Chain Tree -- 3.4 Problem State-Space Model of Biochemical Networks -- 3.5 Intelligent Search and Tracking -- 3.5.1 Artificial Intelligence for CME -- 3.5.2 Bayesian Likelihood Node Projection Function -- 3.6 Complexity of Optimal Solutions -- 3.7 Discussion and Conclusions -- References.
4 Intelligent State Projection -- 4.1 Introduction -- 4.2 Derivation of the Method Conditions -- 4.2.1 Expansion Criterion for States Space -- 4.2.2 Cease of Criterion After Updating -- 4.3 Latitudinal Search Strategy -- 4.3.1 Expansion and Update -- 4.3.2 Biological Example -- 4.4 Longitudinal Latitudinal Search -- 4.4.1 Expansion and Update -- 4.4.2 Biological Example -- 4.5 Data Structure Complexity of Operations -- 4.6 Discussion and Conclusion -- Appendix A.1 Complexity Based on Operations -- References -- 5 Comparative Study and Analysis of Methods and Models -- 5.1 Study Overview -- 5.2 Comparison Based on Catalytic Reaction System -- 5.3 Comparison Based on the Dual Enzymatic Reaction Network -- 5.4 Discussion and Conclusion -- References -- 6 A Large Model Case Study: Solving CME for G1/S Checkpoint Involving the DNA-Damage Signal Transduction Pathway -- 6.1 Introduction -- 6.1.1 What Happens in Normal Conditions? -- 6.1.2 What Happens in the Presence of a DNA-Damage Signal? -- 6.2 Model Integration -- 6.3 Computational Experiments -- 6.4 Discussion and Summary -- References -- 7 An Integrated Large Model Case Study: Solving CME for Oxidative Stress Adaptation in the Fungal Pathogen Candida Albicans -- 7.1 Introduction -- 7.1.1 Integrated Model Overview -- 7.2 Model Integration -- 7.2.1 Transporter Module -- 7.2.2 Antioxidant Module -- 7.2.3 Protein-Thiol Module -- 7.2.4 Signaling and Gene Expression Module -- 7.3 Computational Experiments -- 7.4 Discussion and Summary -- References.
Record Nr. UNINA-9910502664103321
Kulasiri Don  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational modelling of multi-scale non-fickian dispersion in porous media : an approach based on stochastic calculus / / Don Kulasiri
Computational modelling of multi-scale non-fickian dispersion in porous media : an approach based on stochastic calculus / / Don Kulasiri
Autore Kulasiri Don
Pubbl/distr/stampa Rijeka, Crotia : , : IntechOpen, , [2011]
Descrizione fisica 1 online resource (244 pages) : illustrations
Disciplina 620.116
Soggetto topico Porous materials - Fluid dynamics
Hydrodynamics - Mathematical models
ISBN 953-51-5702-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Computational modelling of multi-scale non-fickian dispersion in porous media
Record Nr. UNINA-9910138251103321
Kulasiri Don  
Rijeka, Crotia : , : IntechOpen, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Non-fickian Solute Transport in Porous Media : A Mechanistic and Stochastic Theory / / by Don Kulasiri
Non-fickian Solute Transport in Porous Media : A Mechanistic and Stochastic Theory / / by Don Kulasiri
Autore Kulasiri Don
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (227 p.)
Disciplina 620.11696
Collana Advances in Geophysical and Environmental Mechanics and Mathematics
Soggetto topico Geophysics
Fluids
Mathematical models
Geophysics/Geodesy
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
ISBN 3-642-34985-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto NonFickian Solute Transport -- Stochastic Differential Equations and Related Inverse Problems -- A Stochastic Model for Hydrodynamic Dispersion -- A Generalized Mathematical Model in One-dimension -- Theories of Fluctuations and Dissipation -- Multiscale, Generalised Stochastic Solute Transport Model in One Dimension -- The Stochastic Solute Transport Model in 2-Dimensions -- Multiscale Dispersion in 2 dimensions.
Record Nr. UNINA-9910799232303321
Kulasiri Don  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic Differential Equations for Chemical Transformations in White Noise Probability Space : Wick Products and Computations / / by Don Kulasiri
Stochastic Differential Equations for Chemical Transformations in White Noise Probability Space : Wick Products and Computations / / by Don Kulasiri
Autore Kulasiri Don
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (181 pages)
Disciplina 530.10285
Soggetto topico Mathematical physics
Computer simulation
Differential equations
Bioinformatics
Biomathematics
Computational Physics and Simulations
Differential Equations
Computational and Systems Biology
Mathematical and Computational Biology
ISBN 9789819793921
9819793920
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to Chemical transformations in far from equilibrium systems -- Chapter 2. A brief introduction to vectors spaces: succinct but pertinent summary for scientists -- Chapter 3. White noise probability spaces (Hermite polynomials and functions and their use in defining Weiner Chaos expansion) -- Chapter 4. Introduction to Skorohod integration and Malliavian derivatives—practical interpretations -- Chapter 5. Introduction to Wick Product and its algebra (analytical solutions to Wick product driven stochastic differential equations; Hermite transformations) -- Chapter 6. Numerical solutions to stochastic chemical reactions -- Chapter 7. Stochastic coupled reactions systems: Numerical solutions -- Chapter 8. Modelling chiral symmetry breaking and stability in a noisy environment using Wick products—A case study.
Record Nr. UNINA-9910951905003321
Kulasiri Don  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui