top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
Soggetto genere / forma Electronic books.
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910467004103321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910537097603321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910816003803321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio wave propagation in the marine boundary layer [[electronic resource] /] / Alexander Kukushkin
Radio wave propagation in the marine boundary layer [[electronic resource] /] / Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (207 p.)
Disciplina 621.38411
Soggetto topico Radio wave propagation - Mathematical models
Radio wave propagation - Computer simulation
Soggetto genere / forma Electronic books.
ISBN 1-280-51984-3
9786610519842
3-527-60381-6
3-527-60455-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Radio Wave Propagation in the Marine Boundary Layer; Preface; Contents; 1 Atmospheric Boundary Layer and Basics of the Propagation Mechanisms; 1.1 Standard Model of the Troposphere; 1.2 Non-standard Mechanisms of Propagation; 1.2.1 Evaporation Duct; 1.2.2 Elevated M-inversion; 1.3 Random Component of Dielectric Permittivity; 1.3.1 Locally Uniform Fluctuations; References; 2 Parabolic Approximation to the Wave Equation; 2.1 Analytical Methods in the Problems of Wave Propagation in a Stratified and Random Medium
2.2 Parabolic Approximation to a Wave Equation in a Stratified Troposphere Filled with Turbulent Fluctuations of the Refractive Index2.3 Green Function for a Parabolic Equation in a Stratified Medium; 2.4 Feynman Path Integrals in the Problems of Wave Propagation in Random Media; 2.5 Numerical Methods of Parabolic Equations; 2.6 Basics of Focks Theory; 2.7 Focks Theory of the Evaporation Duct; References; 3 Wave Field Fluctuations in Random Media over a Boundary Interface; 3.1 Reflection Formulas for the Wave Field in a Random Medium over an Ideally Reflective Boundary
3.1.1 Ideally Reflective Flat Surface3.1.2 Spherical Surface; 3.2 Fluctuations of the Waves in a Random Non-uniform Medium above a Plane with Impedance Boundary Conditions; 3.3 Comments on Calculation of the LOS Field in the General Situation; References; 4 UHF Propagation in an Evaporation Duct; 4.1 Some Results of Propagation Measurements and Comparison with Theory; 4.2 Perturbation Theory for the Spectrum of Normal Waves in a Stratified Troposphere; 4.2.1 Problem Formulation; 4.2.2 Linear Distortion; 4.2.3 Smooth Distortion; 4.2.4 Height Function
4.2.5 Linear-Logarithmic Profile at Heights Close to the Sea Surface4.3 Spectrum of Normal Waves in an Evaporation Duct; 4.4 Coherence Function in a Random and Non-uniform Atmosphere; 4.4.1 Approximate Extraction of the Eigenwave of the Discrete Spectrum in the Presence of an Evaporation Duct; 4.4.2 Equations for the Coherence Function; 4.5 Excitation of Waves in a Continuous Spectrum in a Statistically Inhomogeneous Evaporation Duct; 4.6 Evaporation Duct with Two Trapped Modes; References; 5 Impact of Elevated M-inversions on the UHF/EHF Field Propagation beyond the Horizon
5.1 Modal Representation of the Wave Field for the Case of Elevated M-inversion5.2 Hybrid Representation; 5.2.1 Secondary Excitation of the Evaporation Duct by the Waves Reflected from an Elevated Refractive Layer; 5.3 Comparison of Experiment with the Deterministic Theory of the Elevated Duct Propagation; 5.4 Excitation of the Elevated Duct due to Scattering on the Fluctuations in the Refractive Index; References; 6 Scattering Mechanism of Over-horizon UHF Propagation; 6.1 Basic Equations; 6.2 Perturbation Theory: Calculation of Field Moments
6.3 Scattering of a Diffracted Field on the Turbulent Fluctuations in the Refractive Index
Record Nr. UNINA-9910144587203321
Kukushkin Alexander  
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio wave propagation in the marine boundary layer [[electronic resource] /] / Alexander Kukushkin
Radio wave propagation in the marine boundary layer [[electronic resource] /] / Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (207 p.)
Disciplina 621.38411
Soggetto topico Radio wave propagation - Mathematical models
Radio wave propagation - Computer simulation
ISBN 1-280-51984-3
9786610519842
3-527-60381-6
3-527-60455-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Radio Wave Propagation in the Marine Boundary Layer; Preface; Contents; 1 Atmospheric Boundary Layer and Basics of the Propagation Mechanisms; 1.1 Standard Model of the Troposphere; 1.2 Non-standard Mechanisms of Propagation; 1.2.1 Evaporation Duct; 1.2.2 Elevated M-inversion; 1.3 Random Component of Dielectric Permittivity; 1.3.1 Locally Uniform Fluctuations; References; 2 Parabolic Approximation to the Wave Equation; 2.1 Analytical Methods in the Problems of Wave Propagation in a Stratified and Random Medium
2.2 Parabolic Approximation to a Wave Equation in a Stratified Troposphere Filled with Turbulent Fluctuations of the Refractive Index2.3 Green Function for a Parabolic Equation in a Stratified Medium; 2.4 Feynman Path Integrals in the Problems of Wave Propagation in Random Media; 2.5 Numerical Methods of Parabolic Equations; 2.6 Basics of Focks Theory; 2.7 Focks Theory of the Evaporation Duct; References; 3 Wave Field Fluctuations in Random Media over a Boundary Interface; 3.1 Reflection Formulas for the Wave Field in a Random Medium over an Ideally Reflective Boundary
3.1.1 Ideally Reflective Flat Surface3.1.2 Spherical Surface; 3.2 Fluctuations of the Waves in a Random Non-uniform Medium above a Plane with Impedance Boundary Conditions; 3.3 Comments on Calculation of the LOS Field in the General Situation; References; 4 UHF Propagation in an Evaporation Duct; 4.1 Some Results of Propagation Measurements and Comparison with Theory; 4.2 Perturbation Theory for the Spectrum of Normal Waves in a Stratified Troposphere; 4.2.1 Problem Formulation; 4.2.2 Linear Distortion; 4.2.3 Smooth Distortion; 4.2.4 Height Function
4.2.5 Linear-Logarithmic Profile at Heights Close to the Sea Surface4.3 Spectrum of Normal Waves in an Evaporation Duct; 4.4 Coherence Function in a Random and Non-uniform Atmosphere; 4.4.1 Approximate Extraction of the Eigenwave of the Discrete Spectrum in the Presence of an Evaporation Duct; 4.4.2 Equations for the Coherence Function; 4.5 Excitation of Waves in a Continuous Spectrum in a Statistically Inhomogeneous Evaporation Duct; 4.6 Evaporation Duct with Two Trapped Modes; References; 5 Impact of Elevated M-inversions on the UHF/EHF Field Propagation beyond the Horizon
5.1 Modal Representation of the Wave Field for the Case of Elevated M-inversion5.2 Hybrid Representation; 5.2.1 Secondary Excitation of the Evaporation Duct by the Waves Reflected from an Elevated Refractive Layer; 5.3 Comparison of Experiment with the Deterministic Theory of the Elevated Duct Propagation; 5.4 Excitation of the Elevated Duct due to Scattering on the Fluctuations in the Refractive Index; References; 6 Scattering Mechanism of Over-horizon UHF Propagation; 6.1 Basic Equations; 6.2 Perturbation Theory: Calculation of Field Moments
6.3 Scattering of a Diffracted Field on the Turbulent Fluctuations in the Refractive Index
Record Nr. UNINA-9910830588603321
Kukushkin Alexander  
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio wave propagation in the marine boundary layer / / Alexander Kukushkin
Radio wave propagation in the marine boundary layer / / Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (207 p.)
Disciplina 621.38411
Soggetto topico Radio wave propagation - Mathematical models
Radio wave propagation - Computer simulation
ISBN 9786610519842
9781280519840
1280519843
9783527603817
3527603816
9783527604555
3527604553
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Radio Wave Propagation in the Marine Boundary Layer; Preface; Contents; 1 Atmospheric Boundary Layer and Basics of the Propagation Mechanisms; 1.1 Standard Model of the Troposphere; 1.2 Non-standard Mechanisms of Propagation; 1.2.1 Evaporation Duct; 1.2.2 Elevated M-inversion; 1.3 Random Component of Dielectric Permittivity; 1.3.1 Locally Uniform Fluctuations; References; 2 Parabolic Approximation to the Wave Equation; 2.1 Analytical Methods in the Problems of Wave Propagation in a Stratified and Random Medium
2.2 Parabolic Approximation to a Wave Equation in a Stratified Troposphere Filled with Turbulent Fluctuations of the Refractive Index2.3 Green Function for a Parabolic Equation in a Stratified Medium; 2.4 Feynman Path Integrals in the Problems of Wave Propagation in Random Media; 2.5 Numerical Methods of Parabolic Equations; 2.6 Basics of Focks Theory; 2.7 Focks Theory of the Evaporation Duct; References; 3 Wave Field Fluctuations in Random Media over a Boundary Interface; 3.1 Reflection Formulas for the Wave Field in a Random Medium over an Ideally Reflective Boundary
3.1.1 Ideally Reflective Flat Surface3.1.2 Spherical Surface; 3.2 Fluctuations of the Waves in a Random Non-uniform Medium above a Plane with Impedance Boundary Conditions; 3.3 Comments on Calculation of the LOS Field in the General Situation; References; 4 UHF Propagation in an Evaporation Duct; 4.1 Some Results of Propagation Measurements and Comparison with Theory; 4.2 Perturbation Theory for the Spectrum of Normal Waves in a Stratified Troposphere; 4.2.1 Problem Formulation; 4.2.2 Linear Distortion; 4.2.3 Smooth Distortion; 4.2.4 Height Function
4.2.5 Linear-Logarithmic Profile at Heights Close to the Sea Surface4.3 Spectrum of Normal Waves in an Evaporation Duct; 4.4 Coherence Function in a Random and Non-uniform Atmosphere; 4.4.1 Approximate Extraction of the Eigenwave of the Discrete Spectrum in the Presence of an Evaporation Duct; 4.4.2 Equations for the Coherence Function; 4.5 Excitation of Waves in a Continuous Spectrum in a Statistically Inhomogeneous Evaporation Duct; 4.6 Evaporation Duct with Two Trapped Modes; References; 5 Impact of Elevated M-inversions on the UHF/EHF Field Propagation beyond the Horizon
5.1 Modal Representation of the Wave Field for the Case of Elevated M-inversion5.2 Hybrid Representation; 5.2.1 Secondary Excitation of the Evaporation Duct by the Waves Reflected from an Elevated Refractive Layer; 5.3 Comparison of Experiment with the Deterministic Theory of the Elevated Duct Propagation; 5.4 Excitation of the Elevated Duct due to Scattering on the Fluctuations in the Refractive Index; References; 6 Scattering Mechanism of Over-horizon UHF Propagation; 6.1 Basic Equations; 6.2 Perturbation Theory: Calculation of Field Moments
6.3 Scattering of a Diffracted Field on the Turbulent Fluctuations in the Refractive Index
Record Nr. UNINA-9911019743003321
Kukushkin Alexander  
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui