top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIX, 262 p. 99 illus., 95 illus. in color.)
Disciplina 006
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-84525-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LDTM Workshop -- Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application toParkinson’s Disease trajectory modelling -- Back to the Future: Challenges of Sparse and Irregular Medical Image Time Series -- Individualized multi-horizon MRI trajectory prediction for Alzheimer’s Disease -- Toward, for the Alzheimer’s Disease Neuroimaging Initiative Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling -- BachCuadraSegHeD: Segmentation of Heterogeneous Data for Multiple SclerosisLesions with Anatomical Constraints -- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting -- Registration of Longitudinal Liver Examinations for Tumor ProgressAssessment -- Tracking lesion evolution using a Boundary Enhanced Approach for MS change segmentation (BEAMS) -- A Radiological-based Coordinate System for the Human Body: A Proof-of-Concept -- MMMI-ML4MHD Workshop -- Language Models Meet Anomaly Detection for Better Interpretabilityand Generalizability -- A Diffusion Model Embedded WCSAU-Net for 3D MRI Brain Tumor Segmentation -- Predicting Human Brain States with Transformer -- Modality Image Quality Prediction for Time-Resolved CT fromBreathing Signals -- RATNUS: Rapid, Automatic Thalamic Nuclei Segmentation using Multimodal MRI inputs -- HyperMM : Robust Multimodal Learning with Varying-sized Inputs -- EMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator -- Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis -- ML-CDS Workshop -- MedPromptX: Grounded Multimodal Prompting for Chest X-rayDiagnosis -- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning -- Multimodality for Diagnosis of Asian Choroidal Vasculopathy: Resultsfrom a Novel Dataset and Deep-learning Experiments -- Multimodality Frequency Feature Customized Learning for PediatricVentricular Septal Defects Identification.
Record Nr. UNINA-9910996484603321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIX, 262 p. 99 illus., 95 illus. in color.)
Disciplina 006
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-84525-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LDTM Workshop -- Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application toParkinson’s Disease trajectory modelling -- Back to the Future: Challenges of Sparse and Irregular Medical Image Time Series -- Individualized multi-horizon MRI trajectory prediction for Alzheimer’s Disease -- Toward, for the Alzheimer’s Disease Neuroimaging Initiative Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling -- BachCuadraSegHeD: Segmentation of Heterogeneous Data for Multiple SclerosisLesions with Anatomical Constraints -- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting -- Registration of Longitudinal Liver Examinations for Tumor ProgressAssessment -- Tracking lesion evolution using a Boundary Enhanced Approach for MS change segmentation (BEAMS) -- A Radiological-based Coordinate System for the Human Body: A Proof-of-Concept -- MMMI-ML4MHD Workshop -- Language Models Meet Anomaly Detection for Better Interpretabilityand Generalizability -- A Diffusion Model Embedded WCSAU-Net for 3D MRI Brain Tumor Segmentation -- Predicting Human Brain States with Transformer -- Modality Image Quality Prediction for Time-Resolved CT fromBreathing Signals -- RATNUS: Rapid, Automatic Thalamic Nuclei Segmentation using Multimodal MRI inputs -- HyperMM : Robust Multimodal Learning with Varying-sized Inputs -- EMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator -- Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis -- ML-CDS Workshop -- MedPromptX: Grounded Multimodal Prompting for Chest X-rayDiagnosis -- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning -- Multimodality for Diagnosis of Asian Choroidal Vasculopathy: Resultsfrom a Novel Dataset and Deep-learning Experiments -- Multimodality Frequency Feature Customized Learning for PediatricVentricular Septal Defects Identification.
Record Nr. UNISA-996655268903316
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui