Vai al contenuto principale della pagina

Fundamentals of Clinical Data Science [[electronic resource] /] / edited by Pieter Kubben, Michel Dumontier, Andre Dekker



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kubben Pieter Visualizza persona
Titolo: Fundamentals of Clinical Data Science [[electronic resource] /] / edited by Pieter Kubben, Michel Dumontier, Andre Dekker Visualizza cluster
Pubblicazione: Cham, : Springer Nature, 2019
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (VIII, 219 p. 45 illus., 35 illus. in color.)
Disciplina: 502.85
Soggetto topico: Health informatics
Bioinformatics
Data Science
Medical Informatics
Precision Medicine - methods
Soggetto non controllato: Medicine
Health informatics
Bioinformatics
Persona (resp. second.): KubbenPieter
DumontierMichel
DekkerAndre
Nota di contenuto: Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns).
Sommario/riassunto: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Titolo autorizzato: Fundamentals of Clinical Data Science  Visualizza cluster
ISBN: 3-319-99713-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910337520303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui