top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied multiway data analysis [[electronic resource] /] / Pieter M. Kroonenberg
Applied multiway data analysis [[electronic resource] /] / Pieter M. Kroonenberg
Autore Kroonenberg Pieter M
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2008
Descrizione fisica 1 online resource (614 p.)
Disciplina 519.5
519.5/35
519.535
Collana Wiley series in probability and statistics
Soggetto topico Multivariate analysis
Multiple comparisons (Statistics)
Principal components analysis
Soggetto genere / forma Electronic books.
ISBN 1-281-23734-5
9786611237349
0-470-23800-3
0-470-23799-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED MULTIWAY DATA ANALYSIS; CONTENTS; Foreword; Preface; PART I DATA, MODELS, AND ALGORITHMS; 1 Overture; 1.1 Three-way and multiway data; 1.2 Multiway data analysis; 1.3 Before the arrival of three-mode analysis; 1.4 Three-mode data-analytic techniques; 1.5 Example: Judging Chopin's preludes; 1.6 Birth of the Tucker model; 1.7 Current status of multiway analysis; 2 Overview; 2.1 What are multiway data?; 2.2 Why multiway analysis?; 2.3 What is a model?; 2.4 Some history; 2.5 Multiway models and methods; 2.6 Conclusions; 3 Three-Way and Multiway Data; 3.1 Chapter preview; 3.2 Terminology
3.3 Two-way solutions to three-way data3.4 Classification principles; 3.5 Overview of three-way data designs; 3.6 Fully crossed designs; 3.7 Nested designs; 3.8 Scaling designs; 3.9 Categorical data; 4 Component Models for Fully-Crossed Designs; 4.1 Introduction; 4.2 Chapter preview; 4.3 Two-mode modeling of three-way data; 4.4 Extending two-mode component models to three-mode models; 4.5 Tucker models; 4.6 Parafac models; 4.7 ParaTuck2 model; 4.8 Core arrays; 4.9 Relationships between component models; 4.10 Multiway component modeling under constraints; 4.11 Conclusions
5 Algorithms for Multiway Models5.1 Introduction; 5.2 Chapter preview; 5.3 Terminology and general issues; 5.4 An example of an iterative algorithm; 5.5 General behavior of multiway algorithms; 5.6 The Parallel factor model - Parafac; 5.7 The Tucker models; 5.8 STATIS; 5.9 Conclusions; PART II DATA HANDLING, MODEL SELECTION, AND INTERPRETATION; 6 Preprocessing; 6.1 Introduction; 6.2 Chapter preview; 6.3 General considerations; 6.4 Model-based arguments for preprocessing choices; 6.5 Content-based arguments for preprocessing choices; 6.6 Preprocessing and specific multiway data designs
6.7 Centering and analysis-of-variance models: Two-way data6.8 Centering and analysis-of-variance models: Three-way data; 6.9 Recommendations; 7 Missing Data in Multiway Analysis; 7.1 Introduction; 7.2 Chapter preview; 7.3 Handling missing data in two-mode PCA; 7.4 Handling missing data in multiway analysis; 7.5 Multiple imputation in multiway analysis: Data matters; 7.6 Missing data in multiway analysis: Practice; 7.7 Example: Spanjer's Chromatography data; 7.8 Example: NICHD Child care data; 7.9 Further applications; 7.10 Computer programs for multiple imputation
8 Model and Dimensionality Selection8.1 Introduction; 8.2 Chapter preview; 8.3 Sample size and stochastics; 8.4 Degrees of freedom; 8.5 Selecting the dimensionality of a Tucker model; 8.6 Selecting the dimensionality of a Parafac model; 8.7 Model selection from a hierarchy; 8.8 Model stability and predictive power; 8.9 Example: Chopin prelude data; 8.10 Conclusions; 9 Interpreting Component Models; 9.1 Chapter preview; 9.2 General principles; 9.3 Representations of component models; 9.4 Scaling of components; 9.5 Interpreting core arrays; 9.6 Interpreting extended core arrays
9.7 Special topics
Record Nr. UNINA-9910145562403321
Kroonenberg Pieter M  
Hoboken, N.J., : Wiley-Interscience, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied multiway data analysis / / Pieter M. Kroonenberg
Applied multiway data analysis / / Pieter M. Kroonenberg
Autore Kroonenberg Pieter M
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2008
Descrizione fisica 1 online resource (614 p.)
Disciplina 519.5/35
Collana Wiley series in probability and statistics
Soggetto topico Multivariate analysis
Multiple comparisons (Statistics)
Principal components analysis
ISBN 9786611237349
9781281237347
1281237345
9780470238004
0470238003
9780470237991
0470237996
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED MULTIWAY DATA ANALYSIS; CONTENTS; Foreword; Preface; PART I DATA, MODELS, AND ALGORITHMS; 1 Overture; 1.1 Three-way and multiway data; 1.2 Multiway data analysis; 1.3 Before the arrival of three-mode analysis; 1.4 Three-mode data-analytic techniques; 1.5 Example: Judging Chopin's preludes; 1.6 Birth of the Tucker model; 1.7 Current status of multiway analysis; 2 Overview; 2.1 What are multiway data?; 2.2 Why multiway analysis?; 2.3 What is a model?; 2.4 Some history; 2.5 Multiway models and methods; 2.6 Conclusions; 3 Three-Way and Multiway Data; 3.1 Chapter preview; 3.2 Terminology
3.3 Two-way solutions to three-way data3.4 Classification principles; 3.5 Overview of three-way data designs; 3.6 Fully crossed designs; 3.7 Nested designs; 3.8 Scaling designs; 3.9 Categorical data; 4 Component Models for Fully-Crossed Designs; 4.1 Introduction; 4.2 Chapter preview; 4.3 Two-mode modeling of three-way data; 4.4 Extending two-mode component models to three-mode models; 4.5 Tucker models; 4.6 Parafac models; 4.7 ParaTuck2 model; 4.8 Core arrays; 4.9 Relationships between component models; 4.10 Multiway component modeling under constraints; 4.11 Conclusions
5 Algorithms for Multiway Models5.1 Introduction; 5.2 Chapter preview; 5.3 Terminology and general issues; 5.4 An example of an iterative algorithm; 5.5 General behavior of multiway algorithms; 5.6 The Parallel factor model - Parafac; 5.7 The Tucker models; 5.8 STATIS; 5.9 Conclusions; PART II DATA HANDLING, MODEL SELECTION, AND INTERPRETATION; 6 Preprocessing; 6.1 Introduction; 6.2 Chapter preview; 6.3 General considerations; 6.4 Model-based arguments for preprocessing choices; 6.5 Content-based arguments for preprocessing choices; 6.6 Preprocessing and specific multiway data designs
6.7 Centering and analysis-of-variance models: Two-way data6.8 Centering and analysis-of-variance models: Three-way data; 6.9 Recommendations; 7 Missing Data in Multiway Analysis; 7.1 Introduction; 7.2 Chapter preview; 7.3 Handling missing data in two-mode PCA; 7.4 Handling missing data in multiway analysis; 7.5 Multiple imputation in multiway analysis: Data matters; 7.6 Missing data in multiway analysis: Practice; 7.7 Example: Spanjer's Chromatography data; 7.8 Example: NICHD Child care data; 7.9 Further applications; 7.10 Computer programs for multiple imputation
8 Model and Dimensionality Selection8.1 Introduction; 8.2 Chapter preview; 8.3 Sample size and stochastics; 8.4 Degrees of freedom; 8.5 Selecting the dimensionality of a Tucker model; 8.6 Selecting the dimensionality of a Parafac model; 8.7 Model selection from a hierarchy; 8.8 Model stability and predictive power; 8.9 Example: Chopin prelude data; 8.10 Conclusions; 9 Interpreting Component Models; 9.1 Chapter preview; 9.2 General principles; 9.3 Representations of component models; 9.4 Scaling of components; 9.5 Interpreting core arrays; 9.6 Interpreting extended core arrays
9.7 Special topics
Record Nr. UNINA-9910876930003321
Kroonenberg Pieter M  
Hoboken, N.J., : Wiley-Interscience, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui