top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electric mobility in public transport--driving towards cleaner air / / editors, Krzysztof Krawiec, Sylwester Markusik, Grzegorz Sierpinski
Electric mobility in public transport--driving towards cleaner air / / editors, Krzysztof Krawiec, Sylwester Markusik, Grzegorz Sierpinski
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (viii, 216 pages) : illustrations (some color)
Disciplina 388.3493
Collana Lecture notes in intelligent transportation and infrastructure
Soggetto topico Transportation - Technological innovations
Transportation and state
Buses, Electric
Vehicles elèctrics
Transport públic
Autobusos
Política de transports
Seguretat informàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67431-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483687103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming [[electronic resource] ] : 17th European Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor Manuel Rivas Santos, Kevin Sim
Genetic Programming [[electronic resource] ] : 17th European Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor Manuel Rivas Santos, Kevin Sim
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (XII, 247 p. 78 illus.)
Disciplina 006.31
Collana Theoretical Computer Science and General Issues
Soggetto topico Algorithms
Computer science
Artificial intelligence
Application software
Theory of Computation
Artificial Intelligence
Computer and Information Systems Applications
ISBN 3-662-44303-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Table of Contents -- Oral Presentations -- Higher Order Functions for Kernel Regression -- 1 Introduction -- 2 Kernel Regression -- 3 Higher Order Functions -- 4 Method -- 4.1 Wrapper Approach to the Evolution of Distance Measures -- 4.2 Experiment Design -- 5 Results Analysis -- 6 Conclusion and Future Work -- References -- Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets -- 1 Introduction -- 2 Related Work: Accelerating GP with GPUs -- 3 The Core GP Learner -- 3.1 Mean Squared Error and Pearson Correlation on GPUs -- 3.2 Individual Level Parallelism -- 4 Flash - The GP-GPU Ensemble Learning System -- 4.1 GP Instances -- 4.2 Generating a Fused Model -- 5 Experimental Setup -- 5.1 Million Song Dataset Year Prediction Challenge -- 5.2 Ensemble Configurations -- 6 Results -- 6.1 Prediction Error Analysis -- 6.2 Prediction Error vs. GP Instances -- 6.3 Runtime Analysis -- 7 Conclusions and Future Work -- References -- Learning Dynamical Systems Using Standard Symbolic Regression -- 1 Introduction -- 2 Background -- 2.1 Genetic Programming and Symbolic Regression -- 2.2 Differential Equations and First-Order Approximation -- 3 Proposed Approach -- 4 Case Study -- 5 Experimental Results -- 5.1 Noise-Free Data -- 5.2 Absolute Noise -- 5.3 Noise 5% -- 5.4 Noise 10% -- 6 Results Discussion -- 7 Conclusions and Future Works -- References -- Semantic Crossover Based on the Partial Derivative Error -- 1 Introduction -- 2 Semantic Crossover Based on Partial Derivative Error -- 2.1 Backpropagation -- 2.2 Selecting the Crossing Points -- 3 Results -- 4 Conclusions -- References -- A Multi-dimensional Genetic Programming Approach for Multi-class Classification Problems -- 1 Introduction -- 2 Related Work -- 3 Formulation of Multi-dimensional GP -- 4 Algorithm -- 5 Experimental Analysis -- 5.1 Data Sets.
5.2 Experiments with GP Classifiers -- 5.3 Comparison with Various Classifiers -- 6 Conclusions and Future Directions -- References -- Generalisation Enhancement via Input Space Transformation: A GP Approach -- 1 Introduction -- 2 Related Works -- 3 Proposed Approach -- 3.1 Trees Return Multiple Outputs -- 3.2 FitnessMeasure -- 4 Experiments and Analysis -- 4.1 Experimental Settings -- 4.2 Results -- 5 Conclusions -- References -- On Diversity, Teaming, and Hierarchical Policies: Observations from the Keepaway Soccer Task -- 1 Introduction -- 2 Related Work -- 3 Hierarchical Symbiotic Policy Search -- 3.1 Symbiont -- 3.2 Variation Operators -- 3.3 Selection Operator -- 3.4 Constructing Hierarchical Policies -- 3.5 Fitness and Diversity -- 4 Results -- 5 Conclusion -- References -- Genetically Improved CUDA C++ Software -- 1 Introduction -- 2 Source Code: StereoCamera -- 3 Example Stereo Pairs from Microsoft's I2I Database -- 4 Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes -- 5 Alternative Implementations -- 5.1 Avoiding Reusing Threads: XHALO -- 5.2 Parallel of Discrepancy Offsets: DPER -- 6 Parameters Accessible to Evolution -- 6.1 Fixed Configuration Parameters -- 7 Evolvable Code -- 7.1 Initial Population -- 7.2 Weights -- 7.3 Mutation -- 7.4 Crossover -- 7.5 Fitness -- 7.6 Selection -- 8 Results -- 8.1 GP Better Than Random Search -- 9 Evolved Tesla K20c CUDA Code -- 10 Conclusions -- References -- Measuring Mutation Operators' Exploration-Exploitation Behaviour and Long-Term Biases -- 1 Introduction -- 1.1 Reader's Guide -- 2 Related Work -- 3 Statistics on Markov Chains -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Measuring Exploration-Exploitation Behaviour -- 4.3 Exploration-Exploitation Behaviour and Search Space Coverage -- 4.4 Exploration-Exploitation Behaviour and Performance.
4.5 Stationary Distributions -- 5 Conclusions -- 5.1 Limitations -- 5.2 Future Work -- References -- Exploring the Search Space of Hardware / Software Embedded Systems by Means of GP -- 1 Introduction -- 2 Previous Work -- 2.1 Hardware -- 2.2 Software -- 3 Proposed Extensions -- 3.1 Evolvable Hardware Topology Related Changes -- 3.2 Input Modules -- 3.3 Problem Encoding and Search Method -- 4 Experimental Results -- 4.1 Newton-Raphson Division -- 4.2 Finding the Maximum -- 4.3 Parity -- 5 Conclusions -- References -- Enhancing Branch-and-Bound Algorithms for Order Acceptance and Scheduling with Genetic Programming -- 1 Introduction -- 1.1 Goals -- 1.2 Organisation -- 2 Methodology -- 2.1 Branch and Bound Algorithm for OAS -- 3 Computational Results -- 3.1 Datasets -- 3.2 Results -- 4 Conclusions -- References -- Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class -- 1 Introduction -- 2 Genetic Improvement with Multi-donor Transplantation and Specialisation -- 3 Experimental Setup -- 4 Results -- 4.1 Transplanting from MiniSAT-best09 -- 4.2 Transplanting from MiniSAT-bestCIT -- 4.3 Transplanting from MiniSAT-best09 and MiniSAT-bestCIT -- 4.4 Combining Results -- 5 Summary of Related Work -- 6 Conclusions -- References -- ESAGP - A Semantic GP Framework Based on Alignment in the Error Space -- 1 Introduction -- 2 Alignment in the Error Space -- 3 One Step Error Space Alignment GP: ESAGP-1 -- 4 Two Steps Error Space Alignment GP: ESAGP-2 -- 5 Experimental Study -- 6 Conclusions and Future Work -- References -- Building a Stage 1 Computer Aided Detector for Breast Cancer Using Genetic Programming -- 1 Introduction -- 2 Mammography -- 2.1 Computer-Aided Detection of Mammographic Abnormalities -- 2.2 Feature Extraction -- 2.3 Related Work -- 3 Workflow -- 3.1 Separation -- 3.2 Suppression of the Background.
3.3 Segmentation -- 3.4 Textural Features -- 4 Experimental Setup -- 4.1 GP Setup -- 5 Results -- 6 Conclusions and Future Work -- References -- NEAT, There's No Bloat -- 1 Introduction -- 2 Bloat -- 2.1 Causes of Bloat and Bloat Control Methods -- 2.2 The Secret Behind Operator Equalization -- 3 NeuroEvolution of Augmenting Topologies -- 3.1 NEAT Features -- 3.2 NEAT, GP and Bloat -- 4 Experiments -- 4.1 Discussion -- 5 Concluding Remarks and Future Work -- References -- Posters -- The Best Things Don't Always Come in Small Packages: Constant Creation in Grammatical Evolution -- 1 Introduction -- 2 Background -- 3 Experiments -- 3.1 Problem Suite and Evolutionary Parameters -- 3.2 Results -- 3.3 Discussion -- 4 Conclusions -- References -- Asynchronous Evolution by Reference-Based Evaluation: Tertiary Parent Selection and Its Archive -- 1 Introduction -- 2 Tierra-Based Asynchronous Genetic Programming -- 2.1 Overview -- 2.2 Algorithm -- 3 Asynchronous Reference-Based Evaluation -- 3.1 Concept -- 3.2 Algorithm -- 4 Experiment -- 4.1 Settings -- 4.2 Results -- 5 Conclusion -- References -- Behavioral Search Drivers for Genetic Programing -- 1 Introduction -- 2 Background -- 3 Motivation -- 4 Behavioral Evaluation of Programs in GP -- 5 TheExperiment -- 6 Related Work -- 7 Conclusion -- References -- Cartesian Genetic Programming: Why No Bloat? -- 1 Introduction -- 2 Cartesian Genetic Programming -- 3 Bloat and CGP -- 3.1 Neutral Genetic Drift -- 3.2 Length Bias -- 4 Experiments -- 4.1 Regular CGP -- 4.2 No Neutral Genetic Drift -- 4.3 Recurrent CGP -- 4.4 Neutral Search -- 5 Results -- 5.1 Regular CGP -- 5.2 No Neutral Genetic Drift -- 5.3 Recurrent CGP -- 5.4 Neutral Search -- 6 Discussion -- 7 Conclusion -- References -- On Evolution of Multi-category Pattern Classifiers Suitable for Embedded Systems -- 1 Introduction.
2 Cartesian Genetic Programming -- 2.1 Representation -- 2.2 Search Algorithm -- 3 Evolutionary Design of Classifiers -- 4 Experimental Setup -- 5 Experimental Results -- 5.1 Evaluation of the Evolved Classifiers -- 6 Conclusion -- References -- Author Index.
Record Nr. UNISA-996202528503316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Genetic Programming : 17th European Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor Manuel Rivas Santos, Kevin Sim
Genetic Programming : 17th European Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor Manuel Rivas Santos, Kevin Sim
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (XII, 247 p. 78 illus.)
Disciplina 006.31
Collana Theoretical Computer Science and General Issues
Soggetto topico Algorithms
Computer science
Artificial intelligence
Application software
Theory of Computation
Artificial Intelligence
Computer and Information Systems Applications
ISBN 3-662-44303-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Table of Contents -- Oral Presentations -- Higher Order Functions for Kernel Regression -- 1 Introduction -- 2 Kernel Regression -- 3 Higher Order Functions -- 4 Method -- 4.1 Wrapper Approach to the Evolution of Distance Measures -- 4.2 Experiment Design -- 5 Results Analysis -- 6 Conclusion and Future Work -- References -- Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets -- 1 Introduction -- 2 Related Work: Accelerating GP with GPUs -- 3 The Core GP Learner -- 3.1 Mean Squared Error and Pearson Correlation on GPUs -- 3.2 Individual Level Parallelism -- 4 Flash - The GP-GPU Ensemble Learning System -- 4.1 GP Instances -- 4.2 Generating a Fused Model -- 5 Experimental Setup -- 5.1 Million Song Dataset Year Prediction Challenge -- 5.2 Ensemble Configurations -- 6 Results -- 6.1 Prediction Error Analysis -- 6.2 Prediction Error vs. GP Instances -- 6.3 Runtime Analysis -- 7 Conclusions and Future Work -- References -- Learning Dynamical Systems Using Standard Symbolic Regression -- 1 Introduction -- 2 Background -- 2.1 Genetic Programming and Symbolic Regression -- 2.2 Differential Equations and First-Order Approximation -- 3 Proposed Approach -- 4 Case Study -- 5 Experimental Results -- 5.1 Noise-Free Data -- 5.2 Absolute Noise -- 5.3 Noise 5% -- 5.4 Noise 10% -- 6 Results Discussion -- 7 Conclusions and Future Works -- References -- Semantic Crossover Based on the Partial Derivative Error -- 1 Introduction -- 2 Semantic Crossover Based on Partial Derivative Error -- 2.1 Backpropagation -- 2.2 Selecting the Crossing Points -- 3 Results -- 4 Conclusions -- References -- A Multi-dimensional Genetic Programming Approach for Multi-class Classification Problems -- 1 Introduction -- 2 Related Work -- 3 Formulation of Multi-dimensional GP -- 4 Algorithm -- 5 Experimental Analysis -- 5.1 Data Sets.
5.2 Experiments with GP Classifiers -- 5.3 Comparison with Various Classifiers -- 6 Conclusions and Future Directions -- References -- Generalisation Enhancement via Input Space Transformation: A GP Approach -- 1 Introduction -- 2 Related Works -- 3 Proposed Approach -- 3.1 Trees Return Multiple Outputs -- 3.2 FitnessMeasure -- 4 Experiments and Analysis -- 4.1 Experimental Settings -- 4.2 Results -- 5 Conclusions -- References -- On Diversity, Teaming, and Hierarchical Policies: Observations from the Keepaway Soccer Task -- 1 Introduction -- 2 Related Work -- 3 Hierarchical Symbiotic Policy Search -- 3.1 Symbiont -- 3.2 Variation Operators -- 3.3 Selection Operator -- 3.4 Constructing Hierarchical Policies -- 3.5 Fitness and Diversity -- 4 Results -- 5 Conclusion -- References -- Genetically Improved CUDA C++ Software -- 1 Introduction -- 2 Source Code: StereoCamera -- 3 Example Stereo Pairs from Microsoft's I2I Database -- 4 Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes -- 5 Alternative Implementations -- 5.1 Avoiding Reusing Threads: XHALO -- 5.2 Parallel of Discrepancy Offsets: DPER -- 6 Parameters Accessible to Evolution -- 6.1 Fixed Configuration Parameters -- 7 Evolvable Code -- 7.1 Initial Population -- 7.2 Weights -- 7.3 Mutation -- 7.4 Crossover -- 7.5 Fitness -- 7.6 Selection -- 8 Results -- 8.1 GP Better Than Random Search -- 9 Evolved Tesla K20c CUDA Code -- 10 Conclusions -- References -- Measuring Mutation Operators' Exploration-Exploitation Behaviour and Long-Term Biases -- 1 Introduction -- 1.1 Reader's Guide -- 2 Related Work -- 3 Statistics on Markov Chains -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Measuring Exploration-Exploitation Behaviour -- 4.3 Exploration-Exploitation Behaviour and Search Space Coverage -- 4.4 Exploration-Exploitation Behaviour and Performance.
4.5 Stationary Distributions -- 5 Conclusions -- 5.1 Limitations -- 5.2 Future Work -- References -- Exploring the Search Space of Hardware / Software Embedded Systems by Means of GP -- 1 Introduction -- 2 Previous Work -- 2.1 Hardware -- 2.2 Software -- 3 Proposed Extensions -- 3.1 Evolvable Hardware Topology Related Changes -- 3.2 Input Modules -- 3.3 Problem Encoding and Search Method -- 4 Experimental Results -- 4.1 Newton-Raphson Division -- 4.2 Finding the Maximum -- 4.3 Parity -- 5 Conclusions -- References -- Enhancing Branch-and-Bound Algorithms for Order Acceptance and Scheduling with Genetic Programming -- 1 Introduction -- 1.1 Goals -- 1.2 Organisation -- 2 Methodology -- 2.1 Branch and Bound Algorithm for OAS -- 3 Computational Results -- 3.1 Datasets -- 3.2 Results -- 4 Conclusions -- References -- Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class -- 1 Introduction -- 2 Genetic Improvement with Multi-donor Transplantation and Specialisation -- 3 Experimental Setup -- 4 Results -- 4.1 Transplanting from MiniSAT-best09 -- 4.2 Transplanting from MiniSAT-bestCIT -- 4.3 Transplanting from MiniSAT-best09 and MiniSAT-bestCIT -- 4.4 Combining Results -- 5 Summary of Related Work -- 6 Conclusions -- References -- ESAGP - A Semantic GP Framework Based on Alignment in the Error Space -- 1 Introduction -- 2 Alignment in the Error Space -- 3 One Step Error Space Alignment GP: ESAGP-1 -- 4 Two Steps Error Space Alignment GP: ESAGP-2 -- 5 Experimental Study -- 6 Conclusions and Future Work -- References -- Building a Stage 1 Computer Aided Detector for Breast Cancer Using Genetic Programming -- 1 Introduction -- 2 Mammography -- 2.1 Computer-Aided Detection of Mammographic Abnormalities -- 2.2 Feature Extraction -- 2.3 Related Work -- 3 Workflow -- 3.1 Separation -- 3.2 Suppression of the Background.
3.3 Segmentation -- 3.4 Textural Features -- 4 Experimental Setup -- 4.1 GP Setup -- 5 Results -- 6 Conclusions and Future Work -- References -- NEAT, There's No Bloat -- 1 Introduction -- 2 Bloat -- 2.1 Causes of Bloat and Bloat Control Methods -- 2.2 The Secret Behind Operator Equalization -- 3 NeuroEvolution of Augmenting Topologies -- 3.1 NEAT Features -- 3.2 NEAT, GP and Bloat -- 4 Experiments -- 4.1 Discussion -- 5 Concluding Remarks and Future Work -- References -- Posters -- The Best Things Don't Always Come in Small Packages: Constant Creation in Grammatical Evolution -- 1 Introduction -- 2 Background -- 3 Experiments -- 3.1 Problem Suite and Evolutionary Parameters -- 3.2 Results -- 3.3 Discussion -- 4 Conclusions -- References -- Asynchronous Evolution by Reference-Based Evaluation: Tertiary Parent Selection and Its Archive -- 1 Introduction -- 2 Tierra-Based Asynchronous Genetic Programming -- 2.1 Overview -- 2.2 Algorithm -- 3 Asynchronous Reference-Based Evaluation -- 3.1 Concept -- 3.2 Algorithm -- 4 Experiment -- 4.1 Settings -- 4.2 Results -- 5 Conclusion -- References -- Behavioral Search Drivers for Genetic Programing -- 1 Introduction -- 2 Background -- 3 Motivation -- 4 Behavioral Evaluation of Programs in GP -- 5 TheExperiment -- 6 Related Work -- 7 Conclusion -- References -- Cartesian Genetic Programming: Why No Bloat? -- 1 Introduction -- 2 Cartesian Genetic Programming -- 3 Bloat and CGP -- 3.1 Neutral Genetic Drift -- 3.2 Length Bias -- 4 Experiments -- 4.1 Regular CGP -- 4.2 No Neutral Genetic Drift -- 4.3 Recurrent CGP -- 4.4 Neutral Search -- 5 Results -- 5.1 Regular CGP -- 5.2 No Neutral Genetic Drift -- 5.3 Recurrent CGP -- 5.4 Neutral Search -- 6 Discussion -- 7 Conclusion -- References -- On Evolution of Multi-category Pattern Classifiers Suitable for Embedded Systems -- 1 Introduction.
2 Cartesian Genetic Programming -- 2.1 Representation -- 2.2 Search Algorithm -- 3 Evolutionary Design of Classifiers -- 4 Experimental Setup -- 5 Experimental Results -- 5.1 Evaluation of the Evolved Classifiers -- 6 Conclusion -- References -- Author Index.
Record Nr. UNINA-9910484703203321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming [[electronic resource] ] : 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013, Proceedings / / edited by Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar, Bin Hu
Genetic Programming [[electronic resource] ] : 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013, Proceedings / / edited by Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar, Bin Hu
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XII, 277 p. 99 illus.)
Disciplina 006.31
Collana Theoretical Computer Science and General Issues
Soggetto topico Algorithms
Computer science
Artificial intelligence
Application software
Theory of Computation
Artificial Intelligence
Computer and Information Systems Applications
ISBN 3-642-37207-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Distance Metrics for Nearest Neighbour Classification Based on Genetic Programming.- Controlling Bloat through Parsimonious Elitist Replacement and Spatial Structure.- Generation of VNS Components with Grammatical Evolution for Vehicle Routing.- Understanding Expansion Order and Phenotypic Connectivity in πGE.- PhenoGP: Combining Programs to Avoid Code Disruption.- Reducing Wasted Evaluations in Cartesian Genetic Programming.- Balancing Learning and Overfitting in Genetic Programming with Interleaved Sampling of Training Data.- Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.- Robustness and Evolvability of Recombination in Linear Genetic Programming.- On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology.- Discovering Subgroups by Means of Genetic Programming.- Program Optimisation with Dependency Injection.- Searching for Novel Classifiers.- Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming.- Automated Problem Decomposition for the Boolean Domain with Genetic Programming.- A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process.- Semantic Bias in Program Coevolution.- A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics -- A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification.- Global Top-Scoring Pair Decision Tree for Gene Expression Data Analysis.- Asynchronous Evaluation Based Genetic Programming: Comparison of Asynchronous and Synchronous Evaluation and Its Analysis.- How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory.- Examining the Diversity Property of Semantic Similarity Based Crossover. Controlling Bloat through Parsimonious Elitist Replacement and Spatial Structure.- Generation of VNS Components with Grammatical Evolution for Vehicle Routing.- Understanding Expansion Order and Phenotypic Connectivity in πGE.- PhenoGP: Combining Programs to Avoid Code Disruption.- Reducing Wasted Evaluations in Cartesian Genetic Programming.- Balancing Learning and Overfitting in Genetic Programming with Interleaved Sampling of Training Data.- Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.- Robustness and Evolvability of Recombination in Linear Genetic Programming.- On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology.- Discovering Subgroups by Means of Genetic Programming.- Program Optimisation with Dependency Injection.- Searching for Novel Classifiers.- Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming.- Automated Problem Decomposition for the Boolean Domain with Genetic Programming.- A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process.- Semantic Bias in Program Coevolution.- A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics -- A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification.- Global Top-Scoring Pair Decision Tree for Gene Expression Data Analysis.- Asynchronous Evaluation Based Genetic Programming: Comparison of Asynchronous and Synchronous Evaluation and Its Analysis.- How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory.- Examining the Diversity Property of Semantic Similarity Based Crossover.
Record Nr. UNISA-996465581303316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Genetic Programming : 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013, Proceedings / / edited by Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar, Bin Hu
Genetic Programming : 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013, Proceedings / / edited by Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar, Bin Hu
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XII, 277 p. 99 illus.)
Disciplina 006.31
Collana Theoretical Computer Science and General Issues
Soggetto topico Algorithms
Computer science
Artificial intelligence
Application software
Theory of Computation
Artificial Intelligence
Computer and Information Systems Applications
ISBN 3-642-37207-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Distance Metrics for Nearest Neighbour Classification Based on Genetic Programming.- Controlling Bloat through Parsimonious Elitist Replacement and Spatial Structure.- Generation of VNS Components with Grammatical Evolution for Vehicle Routing.- Understanding Expansion Order and Phenotypic Connectivity in πGE.- PhenoGP: Combining Programs to Avoid Code Disruption.- Reducing Wasted Evaluations in Cartesian Genetic Programming.- Balancing Learning and Overfitting in Genetic Programming with Interleaved Sampling of Training Data.- Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.- Robustness and Evolvability of Recombination in Linear Genetic Programming.- On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology.- Discovering Subgroups by Means of Genetic Programming.- Program Optimisation with Dependency Injection.- Searching for Novel Classifiers.- Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming.- Automated Problem Decomposition for the Boolean Domain with Genetic Programming.- A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process.- Semantic Bias in Program Coevolution.- A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics -- A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification.- Global Top-Scoring Pair Decision Tree for Gene Expression Data Analysis.- Asynchronous Evaluation Based Genetic Programming: Comparison of Asynchronous and Synchronous Evaluation and Its Analysis.- How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory.- Examining the Diversity Property of Semantic Similarity Based Crossover. Controlling Bloat through Parsimonious Elitist Replacement and Spatial Structure.- Generation of VNS Components with Grammatical Evolution for Vehicle Routing.- Understanding Expansion Order and Phenotypic Connectivity in πGE.- PhenoGP: Combining Programs to Avoid Code Disruption.- Reducing Wasted Evaluations in Cartesian Genetic Programming.- Balancing Learning and Overfitting in Genetic Programming with Interleaved Sampling of Training Data.- Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.- Robustness and Evolvability of Recombination in Linear Genetic Programming.- On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology.- Discovering Subgroups by Means of Genetic Programming.- Program Optimisation with Dependency Injection.- Searching for Novel Classifiers.- Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming.- Automated Problem Decomposition for the Boolean Domain with Genetic Programming.- A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process.- Semantic Bias in Program Coevolution.- A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics -- A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification.- Global Top-Scoring Pair Decision Tree for Gene Expression Data Analysis.- Asynchronous Evaluation Based Genetic Programming: Comparison of Asynchronous and Synchronous Evaluation and Its Analysis.- How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory.- Examining the Diversity Property of Semantic Similarity Based Crossover.
Record Nr. UNINA-9910483354903321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming : 15th European Conference, EuroGP 2012, Málaga, Spain, April 11-13, 2012, Proceedings / / edited by Alberto Moraglio, Sara Silva, Krzysztof Krawiec, Penousal Machado, Carlos Cotta
Genetic Programming : 15th European Conference, EuroGP 2012, Málaga, Spain, April 11-13, 2012, Proceedings / / edited by Alberto Moraglio, Sara Silva, Krzysztof Krawiec, Penousal Machado, Carlos Cotta
Edizione [1st ed. 2012.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012
Descrizione fisica 1 online resource (XII, 279 p. 91 illus.)
Disciplina 005.11
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer programming
Computer science
Algorithms
Application software
Artificial intelligence
Bioinformatics
Programming Techniques
Theory of Computation
Computer and Information Systems Applications
Artificial Intelligence
Computational and Systems Biology
ISBN 3-642-29139-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465999303316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui