| Autore |
Koul Shiban K.
|
| Pubbl/distr/stampa |
Singapore : , : Springer, , [2021]
|
| Descrizione fisica |
1 online resource (336 pages)
|
| Disciplina |
621.384135
|
| Collana |
Lecture Notes in Electrical Engineering
|
| Soggetto topico |
Wireless communication systems in medical care
Ultra-wideband antennas
Wearable technology - Antennas
|
| ISBN |
981-16-3973-6
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
Intro -- Preface -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to Body Centric Wireless Communication -- 1.1 Body Centric Wireless Communication -- 1.2 The Wireless Body Area Networks -- 1.2.1 Applications -- 1.2.1.1 Medical Applications -- 1.2.1.2 Defense, Security and Military -- 1.2.1.3 Sports -- 1.2.1.4 Lifestyle and Entertainment -- 1.2.1.5 Miscellaneous Applications -- 1.3 State-of-the-Art Technologies -- 1.3.1 Wireless Medical Telemetry System (WMTS) and Medical Implant Communications Service (MICS) Bands -- 1.3.2 Industrial, Scientific, and Medical (ISM) Band -- 1.3.3 Ultra-Wideband Technology (UWB) -- 1.3.4 mmWave 60 GHz Technology -- 1.3.5 THz Technology -- 1.4 Wearable Antenna and Body-Centric Propagation Aspects -- 1.5 Scope of the Book -- References -- 2 On-Body Radio Propagation: UWB and mmW Technologies -- 2.1 Introduction -- 2.2 Wearable Antenna Requirements -- 2.2.1 Design Strategy -- 2.2.2 Simulation Based Approach: Performance Analysis -- 2.2.3 UWB Antennas Design for On-Body Communication -- 2.2.4 60 GHz On-Body Antenna Design and Analysis -- 2.2.5 Effect of Feeding Structures -- 2.2.5.1 UWB Antenna -- 2.2.5.2 60 GHz Antenna -- 2.3 Influence of Wearable Antenna Location on the Radiation Pattern -- 2.3.1 Variation of Antenna Radiation Pattern with Body Location and Limb Movements -- 2.3.1.1 Sideways Arm Movement -- 2.3.1.2 Forward Arm Movement -- 2.3.1.3 Sideway/Forward/Backward Leg Movement -- 2.3.1.4 Limb Bending -- 2.3.2 60 GHz Antenna Array for Wearable Smart Glasses -- 2.4 Statistical On-Body Measurement Results -- 2.4.1 Electromagnetic Simulation Based Channel Modeling -- 2.4.2 Tissue Mimicking Phantoms -- 2.4.2.1 UWB Phantom -- 2.4.2.2 mmWave 60 GHz Skin-Equivalent Phantom -- 2.4.3 On-Body Propagation Analysis for UWB Communication -- 2.4.4 On-Body Propagation Analysis at 60 GHz.
2.5 UWB Dynamic On-Body Communication Channels -- 2.5.1 Classification and Statistical Analysis of the On-Body Channel During Physical Exercises -- 2.5.2 On-Body Links Channel Classification -- 2.5.3 Upper Limbs Activity -- 2.5.3.1 Both Arms Movement -- 2.5.3.2 Single Arm Movement -- 2.5.3.3 Arm Bending Movement -- 2.5.4 Lower Limbs Activity -- 2.5.4.1 Both Legs Movement -- 2.5.4.2 Single Leg Movement -- 2.5.4.3 Leg Bending Movement -- 2.5.5 Path Loss and Rms Delay Spread Statistical Analysis -- 2.5.6 On-Body Channel Links Analysis During Daily Physical Activities -- 2.6 Dynamic 60 GHz On-Body Propagation Channels -- 2.7 Conclusion -- References -- 3 Indoor Off-Body and Body-to-Body Communication: UWB and mmW Technologies -- 3.1 Introduction -- 3.2 The Indoor Propagation Environment -- 3.2.1 Path Loss Model -- 3.2.2 Multipath Model -- 3.2.3 UWB Multipath Channel -- 3.2.4 Human Body Influence on Body-Centric Propagation Channels -- 3.3 UWB Channel Modelling and Characterization -- 3.3.1 Off-Body Link -- 3.3.2 Body-to-Body Link -- 3.3.3 Angular Body-Centric Channel Characterization at UWB Frequencies -- 3.3.4 Body-to-Body and Off-Body Links: Experimental Investigation -- 3.3.4.1 Path Loss Magnitude -- 3.3.4.2 Rms Delay Spread -- 3.3.4.3 Multi Path Components -- 3.3.5 Spatial Variation of Path Loss for Off-Body Links: Application Specific -- 3.3.5.1 Statistical Analysis of Path Loss Magnitude -- 3.4 mmWave: 60 GHz -- 3.4.1 Off-Body Communication -- 3.4.2 Body-to-Body Communication at 60 GHz -- 3.4.3 Near-Body Shadowing at 60 GHz -- 3.5 Conclusion -- References -- 4 Flexible and Textile Antennas for Body-Centric Applications -- 4.1 Introduction -- 4.2 Flexible Antenna Requirements -- 4.3 State-of-the-Art Fabrication and Printing Techniques -- 4.4 Flexible Substrates Based UWB Antennas -- 4.4.1 Kapton -- 4.4.2 LCP -- 4.4.3 PDMS -- 4.4.4 Paper.
4.4.5 Innovative Substrate Materials -- 4.5 UWB Textile Antennas -- 4.5.1 Cotton Cloth -- 4.5.2 Felt -- 4.5.3 (PDMS)-Embedded Conductive-Fabric -- 4.5.4 Denim Jean -- 4.5.5 Novel Textile Materials -- 4.6 60 GHz Flexible and Textile Antennas -- 4.7 Conclusion -- References -- 5 Implantable Antennas for WBANs -- 5.1 Introduction -- 5.2 UWB Implantable Antennas -- 5.2.1 Antenna Design Considerations -- 5.2.2 Antenna Design Examples for Various Applications -- 5.2.2.1 Implantable Antennas for Wireless Capsule Endoscopy -- 5.2.2.2 Implantable Antennas for Wireless Brain-Machine-Interface -- 5.3 UWB Phantoms for Implantable Communication -- 5.4 Channel Characterization for Implantable Communication -- 5.4.1 Phantom-Based Channel Characterization -- 5.4.1.1 IB2IB Scenario -- 5.4.1.2 IB2OB Scenario -- 5.4.2 Channel Modeling and Communication Link Analysis -- 5.4.3 Simulation, in Vivo and Phantom Based Comparison -- 5.4.4 Diversity Experimental Results -- 5.5 Conclusion -- References -- 6 Body Centric Localization and Tracking Using Compact Wearable Antennas -- 6.1 Introduction -- 6.1.1 State-of-the-Art Localization Techniques -- 6.2 Body Worn Antenna Localization -- 6.2.1 Body-Worn Antenna Localization Techniques -- 6.2.1.1 Algorithm for Localization -- 6.2.1.2 Time of Arrival Data Fusion Method -- 6.2.1.3 GDOP Analysis -- 6.2.2 Limbs Channel Classification: -- 6.2.2.1 Path Loss Analysis -- 6.2.2.2 Amplitude of Received Signal -- 6.2.2.3 Number of Multipath Components -- 6.2.2.4 Rms Delay Spread -- 6.2.2.5 Kurtosis -- 6.2.3 Human Body Localization -- 6.2.3.1 Path Loss Analysis -- 6.2.3.2 Amplitude of Received Signal -- 6.2.3.3 Number of Multipath Components -- 6.2.3.4 Rms Delay Spread -- 6.2.3.5 Kurtosis -- 6.2.4 Localization Results for Various Activities -- 6.3 Random Base Station Placement -- 6.3.1 Random Base Station Configurations.
6.3.2 Localization Accuracy Analysis -- 6.4 L-shape Base Station Configuration Measurements -- 6.4.1 L-shape Localization -- 6.4.2 Channel Classification and Localization Accuracy -- 6.5 Realistic and Cluttered Indoor Environment -- 6.5.1 UWB Body Centric Localization in Cluttered Environments -- 6.5.2 UWB Body Centric Localization Using Hybrid Antenna Configuration -- 6.5.2.1 Fine and Coarse Channel Classification -- 6.5.2.2 Localization Results -- 6.6 Machine Learning and UWB Body-Centric Localization -- 6.6.1 Measurement Set Up -- 6.6.2 Algorithm and Localization Results -- 6.7 Conclusion -- References -- 7 Wearable Technology for Human Activity Monitoring and Recognition -- 7.1 Introduction -- 7.1.1 State-of-the-Art-Technologies -- 7.2 Assessment of the Physical Activities -- 7.2.1 Measurement Set Up -- 7.2.2 Activity Assessment Results -- 7.2.2.1 Upper Limbs Activity -- 7.2.2.2 Lower Limb Activity -- 7.2.3 Activity Monitoring Performance -- 7.3 Daily Physical Activity Recognition -- 7.4 Joint Angle Estimation Using UWB Wearable Technology -- 7.5 Gait Activity Assessment -- 7.5.1 Gait Activity Analysis -- 7.5.2 Step Length Estimation of Human Gait -- 7.5.3 Foot Clearance Analysis During Walking -- 7.5.4 Gait Activity Identification -- 7.6 Conclusion -- References -- 8 UWB and 60 GHz Radar Technology for Vital Sign Monitoring, Activity Classification and Detection -- 8.1 Introduction -- 8.2 Vital Sign Monitoring -- 8.2.1 Mathematical Model -- 8.2.2 Algorithms and Techniques for Vital Sign Monitoring -- 8.2.2.1 Algorithms, System Design and Signal Processing Methodologies -- 8.2.2.2 Vital Sign Monitoring in Complex Environments -- 8.2.2.3 Advance Signal Processing Trends for Vital-Sign Monitoring -- 8.2.2.4 Monitoring Vital-Signs of Multiple Subjects -- 8.3 Activity Recognition and Classification -- 8.3.1 Activity Recognition.
8.3.2 Through Wall Radar Activity Recognition -- 8.3.3 Gesture Recognition -- 8.3.4 Gait Analysis -- 8.3.5 Sleep Monitoring -- 8.3.6 Daily Activity Monitoring -- 8.3.7 Fall Detection -- 8.3.8 Detection and Localization -- 8.4 60 GHz Vital Sign Monitoring -- 8.5 60 GHz Activity Monitoring -- 8.6 Conclusion -- References -- 9 UWB Radar Technology for Imaging Applications -- 9.1 Introduction -- 9.2 UWB Radar for Medical Imaging Applications -- 9.2.1 Antenna Design Requirements -- 9.2.2 Breast Cancer Detection: State of the Art Techniques and Algorithms -- 9.2.2.1 Antenna Arrays and Phantoms for Breast Cancer Detection -- 9.2.2.2 UWB Breast Cancer Imaging and Neural Networks -- 9.2.2.3 Vivaldi Antennas for Microwave Breast Tumor Detection -- 9.2.2.4 Microwave Breast Imaging Using Time-Domain UWB CSAR Technique -- 9.2.2.5 Antenna Designs Comparison for Breast Tumor Detection -- 9.2.2.6 Optimized UWB Monopole Antenna Design for Microwave Imaging -- 9.2.2.7 Various Antenna Designs for UWB Imaging -- 9.2.3 Brain Imaging -- 9.2.4 Time-Lapse Imaging of Human Heart Motion -- 9.3 Through Wall Imaging -- 9.3.1 UWB Though Wall System Design Aspects and Imaging Techniques -- 9.3.2 Through Wall Human Sensing and Building Layout Reconstruction Using UWB-MIMO -- 9.3.3 Through-The-Wall Detection of Multiple Stationary Humans -- 9.3.4 Current State-Of-The-Art Techniques for UWB TWI -- 9.4 Conclusion -- References -- 10 Emerging Technologies and Future Aspects -- 10.1 Introduction -- 10.2 IoT Applications -- 10.2.1 Smart Cities -- 10.2.2 Smart Home -- 10.2.3 Smart Vehicles -- 10.2.4 Smart Industry -- 10.2.5 IoT for Healthcare -- 10.2.5.1 Telehealth -- 10.3 Antenna Design Requirements for IoT Body-Centric Communication Applications -- 10.3.1 Band-Notch Antennas -- 10.3.2 Graphene and Nano-Particle Based Antennas -- 10.3.3 3D Printing Based Antennas.
10.3.4 Novel Electro-Textile and Materials.
|
| Record Nr. | UNINA-9910502632603321 |