Advances in Power and Control Engineering : Proceedings of GUCON 2019 / / edited by S. N. Singh, R. K. Pandey, Bijaya Ketan Panigrahi, D. P. Kothari
| Advances in Power and Control Engineering : Proceedings of GUCON 2019 / / edited by S. N. Singh, R. K. Pandey, Bijaya Ketan Panigrahi, D. P. Kothari |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (xx, 276 pages) : illustrations |
| Disciplina | 004 |
| Collana | Lecture Notes in Electrical Engineering |
| Soggetto topico |
Power electronics
Vibration Dynamics Renewable energy resources Power Electronics, Electrical Machines and Networks Vibration, Dynamical Systems, Control Renewable and Green Energy |
| ISBN | 981-15-0313-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Economic Approach to Design of a Level 2 Residential Electric Vehicle Supply Equipment -- FPGA Based Speed Control and Back EMF Extraction from Line Voltages Using IIR digital Filters for BLDCM -- Power Quality Enhancement Using FACTS Device in Transmission System With DPFC -- Optimal Placement of Resistive Superconducting Fault Current Limiters in Microgrid -- Comparison of Optimal DG Placement in Radial Distribution System Using Centrality Index -- Forecasting Soil Moisture based on Evaluation of Time Series Analysis -- Artificial Neural Network Based Battery Energy Storage System for Electrical Vehicle -- Data Communication Between DC Microgrids for Real Time Converter Control -- Estimating Capacitor Health Connected in Solar Power System Using Wavelet Transform -- Design Aspects of the Future IoT Based On-Road Charging of Electric Vehicles. |
| Record Nr. | UNINA-9910366612303321 |
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Concentrated Solar Power Systems
| Concentrated Solar Power Systems |
| Autore | Pragathi Bellamkonda |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (276 pages) |
| Disciplina | 621.47/2 |
| Altri autori (Persone) | KothariD. P |
| Soggetto topico |
Solar energy
Solar concentrators |
| ISBN |
9781394272365
1394272367 9781394272372 1394272375 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Conventional Energy Sources -- 1.1 Energy Resources and Their Potential -- 1.1.1 Oil -- 1.1.2 Natural Gas -- 1.1.3 Coal -- 1.1.4 Hydropower -- 1.1.5 Nuclear Energy -- 1.2 Need for Renewable Energy Sources -- 1.3 Potential Renewable Energy Sources (RES) for Power Generation -- 1.3.1 Solar Energy -- 1.3.2 Wind Energy -- 1.3.3 Biomass Energy -- 1.3.4 Hydropower Plants -- 1.3.5 Hydropower Project Classification -- 1.3.6 Geothermal Energy and Its Potential in India Wave Energy -- 1.3.7 Wave Energy -- 1.3.8 Tidal Energy -- 1.3.9 Off‐Grid Renewable Power -- 1.3.9.1 Approaches to Concentrating Solar Power (CSP) -- 1.4 Concentrating Optics -- 1.5 Limits on Concentration -- 1.6 Conclusion -- References -- Chapter 2 Measurement and Estimation of Solar Irradiance -- 2.1 Introduction -- 2.2 Parabolas and Paraboloids -- 2.2.1 Practical Factors Reducing Concentration -- 2.2.1.1 Specularity Error -- 2.2.1.2 Surface Slope Error -- 2.2.1.3 Shape Error -- 2.2.1.4 Tracking Error -- 2.2.1.5 Combinations of Errors -- 2.2.1.6 Cosine Losses and End Losses -- 2.2.1.7 Focal Region Flux Distributions -- 2.2.1.8 Prediction of Focal Region Distributions -- 2.2.1.9 Losses from Receivers -- 2.2.1.10 Radiative Losses -- 2.2.1.11 Convection Losses -- 2.2.1.12 Conduction Losses -- 2.2.1.13 Energy Transport and Storage -- 2.3 Power Cycles for Concentrating Solar Power (CSP) Systems -- 2.3.1 Steam Turbines -- 2.3.2 Organic Rankine Cycles -- 2.3.3 Stirling Engines -- 2.3.4 Brayton Cycles -- 2.3.5 Concentrating Photovoltaics -- 2.3.6 Others -- 2.4 Energy Analysis and the Second Law of Thermodynamics -- 2.4.1 Heat Exchange Between Fluids -- 2.4.2 Optimization of Operating Temperature -- 2.4.3 Optimization of Aperture Size -- 2.4.4 Solar Multiple and Capacity Factor.
2.4.5 Predicting Overall System Performance -- 2.4.6 Economic Analysis -- 2.4.7 Stochastic Modeling of CSP Systems -- 2.5 The Structure of the Sun -- 2.5.1 The Solar Irradiance Spectrum -- 2.5.2 Factors Affecting the Availability of Solar Energy on a Collector Surface -- 2.6 Radiation Instruments -- 2.6.1 Solar Irradiance Components -- 2.6.2 Instruments Used -- 2.6.3 Detectors for Measuring Radiation -- 2.6.4 Measuring Diffuse Radiation -- 2.7 Why Solar Energy Estimation? -- 2.8 Mathematical Models of Solar Irradiance -- 2.8.1 CPCR2 (Code for Physical Computation of Radiation, 2 Bands) Model -- 2.9 Diffuse and Global Energy -- 2.10 REST2 (Reference Evaluation of Solar Transmittance, 2 Bands) Model -- 2.11 Direct Energy -- 2.12 Diffuse and Global Energy -- 2.12.1 Reference Evaluation of Solar Transmittance Model -- 2.12.2 Estimation of Global Irradiance -- 2.12.3 Estimation of Diffuse Irradiance -- 2.13 Regression Models -- 2.14 Intelligent Modeling -- 2.15 Fuzzy Logic‐Based Modeling of Solar Irradiance -- 2.15.1 Datasets -- 2.16 Artificial Neural Network for Solar Energy Estimation -- 2.16.1 Artificial Neuron Model -- 2.16.2 Normalization of Meteorological Data -- 2.16.3 Drawbacks of Conventional ANN -- 2.17 Conclusion -- References -- Chapter 3 Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.1 Introduction -- 3.2 Commercially Available Parabolic‐Trough Collectors (PTCs) -- 3.2.1 Large PTCs -- 3.2.2 Small PTCs -- 3.2.3 Receivers -- 3.3 Existing Parabolic‐Trough Collector (PTC) Solar Thermal Power Plants -- 3.3.1 Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.3.2 Design of Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.3.2.1 Basic PTC Parameters -- 3.3.2.2 Energy Balance in a PTC -- 3.3.2.3 The Objective Function for Optimization -- 3.4 Operations and Maintenance (O& -- M) Costs. 3.4.1 Choice of Performance Criterion -- 3.4.2 Incident, Absorbed, or Delivered Energy -- 3.4.3 Inclusion/Effect of Time‐of‐Day Pricing, Sloped Fields -- 3.5 Effect of Constraints on Optimization -- 3.6 Heliostat Factors -- 3.6.1 Heliostat Size -- 3.6.2 Focusing and Facet Canting -- 3.6.3 Off‐Axis Aberration -- 3.6.4 Effects of Tracking Mode -- 3.6.5 Effects of Heliostat Size on Heliostat Cost and Other Factors -- 3.6.6 Reflectivity and Cleanliness -- 3.7 Receiver Considerations: Cavity vs Flat vs Cylindrical Receivers -- 3.7.1 Field Constraint -- 3.7.2 Reflective, Radiative, and Thermal Loss of the Cavity -- 3.7.3 Cost and Weight -- 3.7.4 Effect of Allowable Flux Density on Design -- 3.7.5 Emissivity vs Absorptivity vs Temperature -- 3.8 Variants on the Basic Central Receiver System -- 3.8.1 Beam‐Down Systems -- 3.8.2 Use of Compound Parabolic Concentrators -- 3.8.3 Optical Beam Splitting -- 3.9 Field Layout and Land Use -- 3.9.1 Ease of Access for Maintenance -- 3.10 Conclusion -- References -- Chapter 4 Hybrid PV-CSP Systems -- 4.1 Hybrid Strategies -- 4.2 Noncompact Hybrid Strategies -- 4.3 Compact Hybrid Strategies -- 4.3.1 High‐Temperature Approach -- 4.3.2 Spectral Splitting -- 4.3.2.1 PV One‐Sun Approach -- 4.3.2.2 Strategies Based on the Spectral Separation of Light -- 4.3.3 Performance‐Based Comparison of the Main Hybrid Strategies -- 4.4 Hybrid PV-TS Systems -- 4.5 Innovative Hybrid Systems -- 4.5.1 Mixed Hybrid Systems -- 4.5.2 Luminescent Solar Concentrators -- 4.5.3 Very High‐Temperature Thermal Energy Storage Coupled with Photovoltaic Conversion -- 4.6 Conclusion -- References -- Chapter 5 Solar Fuels -- 5.1 Introduction to Solar Fuels -- 5.2 Solar Cracking and Reforming of Hydrocarbons -- 5.3 Indirect Heating Reactors -- 5.4 Solar Reforming of Natural Gas -- 5.4.1 State of the Art -- 5.5 Economic Aspects. 5.6 Solar Pyrolysis and Gasification of Solid Carbonaceous Materials -- 5.6.1 State of the Art -- 5.6.2 Economic Aspects -- 5.7 Solar Fuel Production by Thermochemical Dissociation of Water and Carbon Dioxide -- 5.7.1 H2O and CO2 Dissociation -- 5.7.2 Liquid Fuel Production -- 5.7.3 Direct H2O and CO2 Thermolysis -- 5.8 Thermochemical Cycles Principle -- 5.9 Cycles with Volatile Oxides -- 5.10 Nonvolatile Oxide Cycles -- 5.11 Nonstoichiometric Oxide Cycles -- 5.11.1 Ferrite‐Based Cycles -- 5.11.2 Ceria‐Based Cycles -- 5.11.3 Perovskite Structure‐Based Cycles -- 5.12 Solar Reactor Concepts for Cycle Implementation -- 5.13 Decoupled Reactors -- 5.14 Conclusion -- References -- Chapter 6 Concentrating Photovoltaic (CPV) Systems and Applications -- 6.1 Introduction -- 6.1.1 Historical Summary -- 6.2 Fundamental Characteristics of Concentrating Photovoltaic (CPV) Systems -- 6.2.1 Acceptance Angle -- 6.2.2 Principles of Photovoltaic Devices -- 6.2.3 Maintenance -- 6.2.4 Energy Payback and Recyclability -- 6.3 HCPV‐Specific Characteristics -- 6.3.1 Two‐Axis Tracking -- 6.3.2 Multijunction Cells -- 6.4 LCPV‐Specific Characteristics -- 6.5 Medium Concentration Photovoltaic Devices (MCPV) -- 6.5.1 Application to the Market -- 6.6 Design of Concentrating Photovoltaic (CPV) Systems -- 6.6.1 Levelized Cost of Energy -- 6.7 General System Design Goals -- 6.7.1 System Granularity -- 6.7.1.1 Optical Method -- 6.7.1.2 Tracking Type -- 6.7.1.3 Environmental Control Methodology -- 6.7.1.4 Cell Administration -- 6.8 Introduction: Relevance of Energy Storage for Concentrating Solar Power (CSP) -- 6.8.1 Current Commercial Status of Storage Technology -- 6.8.1.1 Sensible Energy Storage -- 6.9 Liquid Storage Media: Two‐Tank Concept -- 6.10 Liquid Storage Media: Steam Accumulator -- 6.11 Solid Media Storage Concepts -- 6.12 Solid Media with Integrated Heat Exchanger. 6.12.1 Packed Bed -- 6.12.2 Solid Particles -- 6.13 Latent Heat Storage Concepts -- 6.14 Phase Change Material (PCM) Concept with Extended Heat Transfer Area -- 6.15 Conclusion -- References -- Chapter 7 Hybridization of Concentrating Solar Power (CSP) with Fossil Fuel Power Plants -- 7.1 Introduction -- 7.2 Solar Hybridization Approaches -- 7.3 The Role of Different Concentrators -- 7.4 Process Integration and Design -- 7.4.1 Economic Effect -- 7.5 Hybridization Process and Arrangement -- 7.6 Case Study Design -- 7.7 Potential of Systems in China -- 7.7.1 Integrated Solar Combined Cycle (ISCC) Power Plants -- 7.8 Process Integration and Design -- 7.9 Major Equipment Design -- 7.10 Typical Demonstration Plant and Project -- 7.10.1 Advanced Hybridization Systems -- 7.11 High‐Temperature Solar Air Preheating -- 7.12 Solar Thermochemical Hybridization Plant -- 7.12.1 Case Study of Medium Temperature Thermochemical Hybridization -- 7.13 Conclusion -- References -- Chapter 8 Grid Integration of PV Systems -- 8.1 Introduction -- 8.2 Grid‐Connected PV Power Systems -- 8.3 Inverter Control Algorithms -- 8.4 Synchronous Reference Frame‐Based Current Controller -- 8.5 Digital PI‐Based Current Controller -- 8.6 Adaptive Notch Filter‐Based Grid Synchronization Approach -- 8.7 Modeling, Simulation, and Hardware Implementation of Controllers -- 8.8 Conclusion -- References -- Chapter 9 Optimization of Concentrating Solar Power (CSP) Plant Designs Through Integrated Techno‐Economic Modeling -- 9.1 Introduction -- 9.2 The Most Recent Advancements in CSP Plant Design and Simulation -- 9.2.1 Calculating Energy Yield -- 9.3 Economic Simulation -- 9.4 Solar Thermal Power Plant Design Procedure -- 9.5 Multivariable Optimization of Concentrating Solar Power (CSP) Plants -- 9.6 Overview of Optimization Methods. 9.7 Case Study Definition: Optimization of a Parabolic Trough Power Plant with Molten Salt Storage. |
| Record Nr. | UNINA-9910978249003321 |
Pragathi Bellamkonda
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||