top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Power and Control Engineering : Proceedings of GUCON 2019 / / edited by S. N. Singh, R. K. Pandey, Bijaya Ketan Panigrahi, D. P. Kothari
Advances in Power and Control Engineering : Proceedings of GUCON 2019 / / edited by S. N. Singh, R. K. Pandey, Bijaya Ketan Panigrahi, D. P. Kothari
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xx, 276 pages) : illustrations
Disciplina 004
Collana Lecture Notes in Electrical Engineering
Soggetto topico Power electronics
Vibration
Dynamics
Renewable energy resources
Power Electronics, Electrical Machines and Networks
Vibration, Dynamical Systems, Control
Renewable and Green Energy
ISBN 981-15-0313-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Economic Approach to Design of a Level 2 Residential Electric Vehicle Supply Equipment -- FPGA Based Speed Control and Back EMF Extraction from Line Voltages Using IIR digital Filters for BLDCM -- Power Quality Enhancement Using FACTS Device in Transmission System With DPFC -- Optimal Placement of Resistive Superconducting Fault Current Limiters in Microgrid -- Comparison of Optimal DG Placement in Radial Distribution System Using Centrality Index -- Forecasting Soil Moisture based on Evaluation of Time Series Analysis -- Artificial Neural Network Based Battery Energy Storage System for Electrical Vehicle -- Data Communication Between DC Microgrids for Real Time Converter Control -- Estimating Capacitor Health Connected in Solar Power System Using Wavelet Transform -- Design Aspects of the Future IoT Based On-Road Charging of Electric Vehicles.
Record Nr. UNINA-9910366612303321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Concentrated Solar Power Systems
Concentrated Solar Power Systems
Autore Pragathi Bellamkonda
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (276 pages)
Disciplina 621.47/2
Altri autori (Persone) KothariD. P
Soggetto topico Solar energy
Solar concentrators
ISBN 9781394272365
1394272367
9781394272372
1394272375
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Conventional Energy Sources -- 1.1 Energy Resources and Their Potential -- 1.1.1 Oil -- 1.1.2 Natural Gas -- 1.1.3 Coal -- 1.1.4 Hydropower -- 1.1.5 Nuclear Energy -- 1.2 Need for Renewable Energy Sources -- 1.3 Potential Renewable Energy Sources (RES) for Power Generation -- 1.3.1 Solar Energy -- 1.3.2 Wind Energy -- 1.3.3 Biomass Energy -- 1.3.4 Hydropower Plants -- 1.3.5 Hydropower Project Classification -- 1.3.6 Geothermal Energy and Its Potential in India Wave Energy -- 1.3.7 Wave Energy -- 1.3.8 Tidal Energy -- 1.3.9 Off‐Grid Renewable Power -- 1.3.9.1 Approaches to Concentrating Solar Power (CSP) -- 1.4 Concentrating Optics -- 1.5 Limits on Concentration -- 1.6 Conclusion -- References -- Chapter 2 Measurement and Estimation of Solar Irradiance -- 2.1 Introduction -- 2.2 Parabolas and Paraboloids -- 2.2.1 Practical Factors Reducing Concentration -- 2.2.1.1 Specularity Error -- 2.2.1.2 Surface Slope Error -- 2.2.1.3 Shape Error -- 2.2.1.4 Tracking Error -- 2.2.1.5 Combinations of Errors -- 2.2.1.6 Cosine Losses and End Losses -- 2.2.1.7 Focal Region Flux Distributions -- 2.2.1.8 Prediction of Focal Region Distributions -- 2.2.1.9 Losses from Receivers -- 2.2.1.10 Radiative Losses -- 2.2.1.11 Convection Losses -- 2.2.1.12 Conduction Losses -- 2.2.1.13 Energy Transport and Storage -- 2.3 Power Cycles for Concentrating Solar Power (CSP) Systems -- 2.3.1 Steam Turbines -- 2.3.2 Organic Rankine Cycles -- 2.3.3 Stirling Engines -- 2.3.4 Brayton Cycles -- 2.3.5 Concentrating Photovoltaics -- 2.3.6 Others -- 2.4 Energy Analysis and the Second Law of Thermodynamics -- 2.4.1 Heat Exchange Between Fluids -- 2.4.2 Optimization of Operating Temperature -- 2.4.3 Optimization of Aperture Size -- 2.4.4 Solar Multiple and Capacity Factor.
2.4.5 Predicting Overall System Performance -- 2.4.6 Economic Analysis -- 2.4.7 Stochastic Modeling of CSP Systems -- 2.5 The Structure of the Sun -- 2.5.1 The Solar Irradiance Spectrum -- 2.5.2 Factors Affecting the Availability of Solar Energy on a Collector Surface -- 2.6 Radiation Instruments -- 2.6.1 Solar Irradiance Components -- 2.6.2 Instruments Used -- 2.6.3 Detectors for Measuring Radiation -- 2.6.4 Measuring Diffuse Radiation -- 2.7 Why Solar Energy Estimation? -- 2.8 Mathematical Models of Solar Irradiance -- 2.8.1 CPCR2 (Code for Physical Computation of Radiation, 2 Bands) Model -- 2.9 Diffuse and Global Energy -- 2.10 REST2 (Reference Evaluation of Solar Transmittance, 2 Bands) Model -- 2.11 Direct Energy -- 2.12 Diffuse and Global Energy -- 2.12.1 Reference Evaluation of Solar Transmittance Model -- 2.12.2 Estimation of Global Irradiance -- 2.12.3 Estimation of Diffuse Irradiance -- 2.13 Regression Models -- 2.14 Intelligent Modeling -- 2.15 Fuzzy Logic‐Based Modeling of Solar Irradiance -- 2.15.1 Datasets -- 2.16 Artificial Neural Network for Solar Energy Estimation -- 2.16.1 Artificial Neuron Model -- 2.16.2 Normalization of Meteorological Data -- 2.16.3 Drawbacks of Conventional ANN -- 2.17 Conclusion -- References -- Chapter 3 Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.1 Introduction -- 3.2 Commercially Available Parabolic‐Trough Collectors (PTCs) -- 3.2.1 Large PTCs -- 3.2.2 Small PTCs -- 3.2.3 Receivers -- 3.3 Existing Parabolic‐Trough Collector (PTC) Solar Thermal Power Plants -- 3.3.1 Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.3.2 Design of Parabolic‐Trough Concentrating Solar Power (CSP) Systems -- 3.3.2.1 Basic PTC Parameters -- 3.3.2.2 Energy Balance in a PTC -- 3.3.2.3 The Objective Function for Optimization -- 3.4 Operations and Maintenance (O& -- M) Costs.
3.4.1 Choice of Performance Criterion -- 3.4.2 Incident, Absorbed, or Delivered Energy -- 3.4.3 Inclusion/Effect of Time‐of‐Day Pricing, Sloped Fields -- 3.5 Effect of Constraints on Optimization -- 3.6 Heliostat Factors -- 3.6.1 Heliostat Size -- 3.6.2 Focusing and Facet Canting -- 3.6.3 Off‐Axis Aberration -- 3.6.4 Effects of Tracking Mode -- 3.6.5 Effects of Heliostat Size on Heliostat Cost and Other Factors -- 3.6.6 Reflectivity and Cleanliness -- 3.7 Receiver Considerations: Cavity vs Flat vs Cylindrical Receivers -- 3.7.1 Field Constraint -- 3.7.2 Reflective, Radiative, and Thermal Loss of the Cavity -- 3.7.3 Cost and Weight -- 3.7.4 Effect of Allowable Flux Density on Design -- 3.7.5 Emissivity vs Absorptivity vs Temperature -- 3.8 Variants on the Basic Central Receiver System -- 3.8.1 Beam‐Down Systems -- 3.8.2 Use of Compound Parabolic Concentrators -- 3.8.3 Optical Beam Splitting -- 3.9 Field Layout and Land Use -- 3.9.1 Ease of Access for Maintenance -- 3.10 Conclusion -- References -- Chapter 4 Hybrid PV-CSP Systems -- 4.1 Hybrid Strategies -- 4.2 Noncompact Hybrid Strategies -- 4.3 Compact Hybrid Strategies -- 4.3.1 High‐Temperature Approach -- 4.3.2 Spectral Splitting -- 4.3.2.1 PV One‐Sun Approach -- 4.3.2.2 Strategies Based on the Spectral Separation of Light -- 4.3.3 Performance‐Based Comparison of the Main Hybrid Strategies -- 4.4 Hybrid PV-TS Systems -- 4.5 Innovative Hybrid Systems -- 4.5.1 Mixed Hybrid Systems -- 4.5.2 Luminescent Solar Concentrators -- 4.5.3 Very High‐Temperature Thermal Energy Storage Coupled with Photovoltaic Conversion -- 4.6 Conclusion -- References -- Chapter 5 Solar Fuels -- 5.1 Introduction to Solar Fuels -- 5.2 Solar Cracking and Reforming of Hydrocarbons -- 5.3 Indirect Heating Reactors -- 5.4 Solar Reforming of Natural Gas -- 5.4.1 State of the Art -- 5.5 Economic Aspects.
5.6 Solar Pyrolysis and Gasification of Solid Carbonaceous Materials -- 5.6.1 State of the Art -- 5.6.2 Economic Aspects -- 5.7 Solar Fuel Production by Thermochemical Dissociation of Water and Carbon Dioxide -- 5.7.1 H2O and CO2 Dissociation -- 5.7.2 Liquid Fuel Production -- 5.7.3 Direct H2O and CO2 Thermolysis -- 5.8 Thermochemical Cycles Principle -- 5.9 Cycles with Volatile Oxides -- 5.10 Nonvolatile Oxide Cycles -- 5.11 Nonstoichiometric Oxide Cycles -- 5.11.1 Ferrite‐Based Cycles -- 5.11.2 Ceria‐Based Cycles -- 5.11.3 Perovskite Structure‐Based Cycles -- 5.12 Solar Reactor Concepts for Cycle Implementation -- 5.13 Decoupled Reactors -- 5.14 Conclusion -- References -- Chapter 6 Concentrating Photovoltaic (CPV) Systems and Applications -- 6.1 Introduction -- 6.1.1 Historical Summary -- 6.2 Fundamental Characteristics of Concentrating Photovoltaic (CPV) Systems -- 6.2.1 Acceptance Angle -- 6.2.2 Principles of Photovoltaic Devices -- 6.2.3 Maintenance -- 6.2.4 Energy Payback and Recyclability -- 6.3 HCPV‐Specific Characteristics -- 6.3.1 Two‐Axis Tracking -- 6.3.2 Multijunction Cells -- 6.4 LCPV‐Specific Characteristics -- 6.5 Medium Concentration Photovoltaic Devices (MCPV) -- 6.5.1 Application to the Market -- 6.6 Design of Concentrating Photovoltaic (CPV) Systems -- 6.6.1 Levelized Cost of Energy -- 6.7 General System Design Goals -- 6.7.1 System Granularity -- 6.7.1.1 Optical Method -- 6.7.1.2 Tracking Type -- 6.7.1.3 Environmental Control Methodology -- 6.7.1.4 Cell Administration -- 6.8 Introduction: Relevance of Energy Storage for Concentrating Solar Power (CSP) -- 6.8.1 Current Commercial Status of Storage Technology -- 6.8.1.1 Sensible Energy Storage -- 6.9 Liquid Storage Media: Two‐Tank Concept -- 6.10 Liquid Storage Media: Steam Accumulator -- 6.11 Solid Media Storage Concepts -- 6.12 Solid Media with Integrated Heat Exchanger.
6.12.1 Packed Bed -- 6.12.2 Solid Particles -- 6.13 Latent Heat Storage Concepts -- 6.14 Phase Change Material (PCM) Concept with Extended Heat Transfer Area -- 6.15 Conclusion -- References -- Chapter 7 Hybridization of Concentrating Solar Power (CSP) with Fossil Fuel Power Plants -- 7.1 Introduction -- 7.2 Solar Hybridization Approaches -- 7.3 The Role of Different Concentrators -- 7.4 Process Integration and Design -- 7.4.1 Economic Effect -- 7.5 Hybridization Process and Arrangement -- 7.6 Case Study Design -- 7.7 Potential of Systems in China -- 7.7.1 Integrated Solar Combined Cycle (ISCC) Power Plants -- 7.8 Process Integration and Design -- 7.9 Major Equipment Design -- 7.10 Typical Demonstration Plant and Project -- 7.10.1 Advanced Hybridization Systems -- 7.11 High‐Temperature Solar Air Preheating -- 7.12 Solar Thermochemical Hybridization Plant -- 7.12.1 Case Study of Medium Temperature Thermochemical Hybridization -- 7.13 Conclusion -- References -- Chapter 8 Grid Integration of PV Systems -- 8.1 Introduction -- 8.2 Grid‐Connected PV Power Systems -- 8.3 Inverter Control Algorithms -- 8.4 Synchronous Reference Frame‐Based Current Controller -- 8.5 Digital PI‐Based Current Controller -- 8.6 Adaptive Notch Filter‐Based Grid Synchronization Approach -- 8.7 Modeling, Simulation, and Hardware Implementation of Controllers -- 8.8 Conclusion -- References -- Chapter 9 Optimization of Concentrating Solar Power (CSP) Plant Designs Through Integrated Techno‐Economic Modeling -- 9.1 Introduction -- 9.2 The Most Recent Advancements in CSP Plant Design and Simulation -- 9.2.1 Calculating Energy Yield -- 9.3 Economic Simulation -- 9.4 Solar Thermal Power Plant Design Procedure -- 9.5 Multivariable Optimization of Concentrating Solar Power (CSP) Plants -- 9.6 Overview of Optimization Methods.
9.7 Case Study Definition: Optimization of a Parabolic Trough Power Plant with Molten Salt Storage.
Record Nr. UNINA-9910978249003321
Pragathi Bellamkonda  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui