Character sums with exponential functions and their applications / / Sergei V. Konyagin, Igor E. Shparlinski [[electronic resource]] |
Autore | Koni︠a︡gin S. V (Sergeĭ Vladimirovich) |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 1999 |
Descrizione fisica | 1 online resource (viii, 163 pages) : digital, PDF file(s) |
Disciplina | 512/.73 |
Collana | Cambridge tracts in mathematics |
Soggetto topico | Exponential sums |
ISBN |
1-107-12817-X
1-280-43245-4 9786610432455 0-511-17763-1 0-511-04036-9 0-511-14804-6 0-511-33017-0 0-511-54293-3 0-511-05179-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Preliminaries -- 1. Introduction -- 2. Notation and Auxiliary Results -- pt. 2. Bounds of Character Sums -- 3. Bounds of Long Character Sums -- 4. Bounds of Short Character Sums -- 5. Bounds of Character Sums for Almost All Moduli -- 6. Bounds of Gaussian Sums -- pt. 3. Multiplicative Translations of Sets -- 7. Multiplicative Translations of Subgroups of F*[subscript p] -- 8. Multiplicative Translations of Arbitrary Sets Modulo p -- pt. 4. Applications to Algebraic Number Fields -- 9. Representatives of Residue Classes -- 10. Cyclotomic Fields and Gaussian Periods -- pt. 5. Applications to Pseudo-Random Number Generators -- 11. Prediction of Pseudo-Random Number Generators -- 12. Congruential Pseudo-Random Number Generators -- pt. 6. Applications to Finite Fields -- 13. Small mth Roots Modulo p -- 14. Supersingular Hyperelliptic Curves -- 15. Distribution of Powers of Primitive Roots -- pt. 7. Applications to Coding Theory and Combinatorics -- 16. Difference Sets in V[subscript p] -- 17. Dimension of BCH Codes -- 18. An Enumeration Problem in Finite Fields. |
Altri titoli varianti | Character Sums with Exponential Functions & their Applications |
Record Nr. | UNINA-9910449865203321 |
Koni︠a︡gin S. V (Sergeĭ Vladimirovich)
![]() |
||
Cambridge : , : Cambridge University Press, , 1999 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Character sums with exponential functions and their applications / / Sergei V. Konyagin, Igor E. Shparlinski [[electronic resource]] |
Autore | Koni︠a︡gin S. V (Sergeĭ Vladimirovich) |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 1999 |
Descrizione fisica | 1 online resource (viii, 163 pages) : digital, PDF file(s) |
Disciplina | 512/.73 |
Collana | Cambridge tracts in mathematics |
Soggetto topico | Exponential sums |
ISBN |
1-107-12817-X
1-280-43245-4 9786610432455 0-511-17763-1 0-511-04036-9 0-511-14804-6 0-511-33017-0 0-511-54293-3 0-511-05179-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Preliminaries -- 1. Introduction -- 2. Notation and Auxiliary Results -- pt. 2. Bounds of Character Sums -- 3. Bounds of Long Character Sums -- 4. Bounds of Short Character Sums -- 5. Bounds of Character Sums for Almost All Moduli -- 6. Bounds of Gaussian Sums -- pt. 3. Multiplicative Translations of Sets -- 7. Multiplicative Translations of Subgroups of F*[subscript p] -- 8. Multiplicative Translations of Arbitrary Sets Modulo p -- pt. 4. Applications to Algebraic Number Fields -- 9. Representatives of Residue Classes -- 10. Cyclotomic Fields and Gaussian Periods -- pt. 5. Applications to Pseudo-Random Number Generators -- 11. Prediction of Pseudo-Random Number Generators -- 12. Congruential Pseudo-Random Number Generators -- pt. 6. Applications to Finite Fields -- 13. Small mth Roots Modulo p -- 14. Supersingular Hyperelliptic Curves -- 15. Distribution of Powers of Primitive Roots -- pt. 7. Applications to Coding Theory and Combinatorics -- 16. Difference Sets in V[subscript p] -- 17. Dimension of BCH Codes -- 18. An Enumeration Problem in Finite Fields. |
Altri titoli varianti | Character Sums with Exponential Functions & their Applications |
Record Nr. | UNINA-9910777087703321 |
Koni︠a︡gin S. V (Sergeĭ Vladimirovich)
![]() |
||
Cambridge : , : Cambridge University Press, , 1999 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|