Vai al contenuto principale della pagina
Autore: | Koncar Vladan |
Titolo: | Smart textiles for in situ monitoring of composites / / Vladan Koncar |
Pubblicazione: | Duxford, Kidlington England ; ; Cambridge, Massachusetts : , : Woodhead Publishing, , 2019 |
Descrizione fisica: | 1 online resource (424 pages) |
Disciplina: | 620.118 |
Soggetto topico: | Fibrous composites |
Nota di contenuto: | Front Cover -- Smart Textiles for In Situ Monitoring of Composites -- The Textile Institute Book Series -- Recently Published and Upcoming Titles in The Textile Institute Book Series -- Related Titles -- Smart Textiles for In Situ Monitoring of Composites -- Copyright -- Contents -- General introduction -- Smart textiles -- References -- Further reading -- 1 - Smart textiles for monitoring and measurement applications -- 1.1 Introduction -- 1.2 Smart textiles -- 1.3 Sensors-definitions and classifications -- 1.3.1 Mechanical sensors-general definitions -- 1.3.1.1 Strain gauges -- 1.3.2 Capacitive sensors -- 1.3.3 Piezoelectric sensors -- 1.3.4 Optical fibers based sensors -- 1.3.5 Textile strain gauges with mobile electrodes -- 1.3.6 Piezoresistive textile sensors-conductive polymer composites based -- 1.3.6.1 Electrical properties and percolation phenomenon -- 1.3.6.2 Conductive polymer composite behavior in the presence of deformations (elongation and pressure) -- 1.3.7 Mechanical properties of conductive polymer composites -- 1.3.7.1 Microruptures phenomenon of piezoresistive coatings -- 1.4 Connectors -- 1.4.1 Basic definitions -- 1.4.2 Washability and reliability of connecting devices -- 1.4.2.1 Washing test -- 1.4.2.2 Washability of silver conductive thread -- 1.4.2.3 Washability of nickel-plated copper wire -- 1.4.2.4 Washability of silver-plated silver copper tinsel -- 1.4.2.5 Washability of interconnections -- 1.4.3 Samples for LATEX-based barrier -- 1.4.3.1 Textiles with three LEDs -- 1.4.3.2 Textiles with LEDs array -- 1.4.4 Washing tests -- 1.4.4.1 Washability of the textiles with three LEDs -- 1.4.4.2 Washability of the textiles with LEDs array -- 1.4.5 Conclusion -- 1.5 Conductive polymers, fibers, and structures -- 1.5.1 Intrinsically conductive polymers -- 1.5.1.1 Poly[3,4-(ethylenedioxy)thiophene]. |
1.5.1.2 Poly[3,4-(ethylenedioxy)thiophene]-compl-poly(4-vinylbenzenesulfonic acid) -- Application-Polypyrrole -- Application-Polyaniline -- Application-PEDOT:PSS (PEDOT-compl-PSS) -- Secondary dopant -- 1.5.2 Carbon fibers piezoresistivity -- 1.5.3 Sensors based on conductive textiles structures -- 1.5.3.1 Comparative studies of different types of yarns and structures -- 1.5.3.2 Sensory material deposited by printing on fabrics -- 1.5.3.3 Implementation by in situ polymerization -- 1.5.3.4 Piezoresistive coating compounds -- 1.5.3.5 Fibrous piezoresistive strain gauges -- 1.5.4 Fibrous sensors based on piezoresistive filaments -- 1.5.5 Conclusion -- 1.6 Materials and sensors for glass fibers based composites monitoring -- 1.6.1 Preparation of the aqueous dispersion of conducting polymer complex, Poly[3,4-(ethylenedioxy)thiophene-compl-poly(4-vinylbe ... -- 1.6.2 Textile sensors development steps -- 1.6.3 Electrical resistance detection of copper wires -- 1.6.4 Textile sensors production according to percolation threshold final study -- 1.6.5 Design and production of laboratory equipment for performing new coating method by using metal rollers onto the yarn and pr ... -- 1.6.6 Procedure conditions determination for performing new coating method by using metal rollers onto the yarn -- 1.6.7 Characterization of textile sensors before insertion in textile preforms-methods used -- 1.6.7.1 Scanning electron microscopy with energy dispersive spectroscopy of yarns and textile sensors -- 1.6.7.2 Tensile testing of yarns for textile sensors preparation -- 1.6.7.3 Electromechanical characterization of produced textile sensors -- 1.6.7.4 Conductivity dependence of textile sensors on climatic conditions -- 1.6.7.5 Consolidation of 2D textile preforms and textile sensors connection with measuring instrument. | |
1.6.7.6 Electromechanical characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors -- 1.6.7.7 Characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors-tomography analysis -- 1.6.7.8 Thermal properties determination -- 1.6.7.9 Thermogravimetric Analysis -- 1.6.7.10 Microscale Combustion Calorimetry analysis -- 1.6.7.11 Limiting Oxygen Index -- 1.6.7.12 Interface phenomena of sensor yarns and related textile reinforced 2D thermoplastic composites -- 1.6.7.13 Adhesion parameters at the interface -- References -- Further reading -- 2 - Composites and hybrid structures -- 2.1 Composites-terms and definitions -- 2.1.1 Introduction -- 2.1.2 Laminate fiber reinforced composites -- 2.2 Textile reinforced composites -- 2.2.1 Woven fiber reinforced composites -- 2.2.1.1 2D woven fabric -- 2.2.1.2 2D weaving process -- 2.2.1.3 Multilayered (or 3D woven) fabric -- 2.2.1.4 3D weaving process -- 2.2.1.5 Multiaxis weaving process -- 2.2.1.6 Two dimensional multiaxis weaving -- 2.2.1.7 Multilayer multiaxis weaving -- 2.2.1.8 Polar multilayer multiaxis weaving -- 2.2.2 Knitted composites -- 2.2.2.1 Noncrimp fabrics -- 2.2.3 Braided composites -- 2.2.4 Z-pinned composites -- 2.3 Outlook-composite structures -- 2.4 Reinforcing fibers -- 2.4.1 Glass fibers -- 2.4.1.1 Sheet molding compound/bulk molding compound -- 2.4.1.2 Open mold/open processes -- 2.4.1.3 Resin transfer molding -- 2.4.1.4 Continuous processing -- 2.4.1.5 Glass mat thermoplastic/long fibers thermoplastic -- 2.4.2 Carbon fibers -- 2.4.3 Aramid fibers -- 2.4.3.1 Metaaramid fiber -- 2.4.3.2 Para-aramid fiber -- 2.4.4 Natural fibers -- 2.5 Matrices -- 2.5.1 Thermosetting matrices -- 2.5.1.1 Unsaturated polyester resins -- 2.5.1.2 Phenolic resins -- 2.5.1.3 Epoxy resins -- 2.5.2 Thermoplastic matrices -- 2.5.2.1 Polyolefin. | |
2.5.2.2 Polyketone resins -- 2.5.2.3 Polyether imide -- 2.5.2.4 Polyarylene sulfide resins -- 2.5.2.5 Bio-based resins -- 2.6 Failure mechanisms in composites -- 2.6.1 Damage -- 2.6.2 Defect/flaw -- 2.6.3 Failure -- 2.6.4 Performance -- 2.6.5 Health -- 2.6.6 Health monitoring -- 2.6.7 Structural identification -- 2.6.8 Structural health monitoring -- 2.7 Hybrid structures, production methodology and principles, state of the art -- 2.8 Hybrid structures-bonding issues-innovative joining techniques -- 2.8.1 Continuous laser welding -- 2.8.2 Friction welding -- 2.8.3 Magnetic pulse welding -- 2.8.4 Electromagnetic driven self-piercing riveting -- 2.8.5 Electron beam welding -- 2.9 Conclusion -- References -- Further Reading -- 3 - Structural health monitoring of composite structures -- 3.1 Health monitoring definitions -- 3.2 State of the art of monitoring techniques -- 3.2.1 Drapability assessment of composite preforms -- 3.2.2 Biaxial tensile testing of flat structures -- 3.2.3 Crash tests -- 3.2.4 Split Hopkinson bar test-characterization under dynamic conditions -- 3.3 Characterization of textile sensors before insertion in textile preforms -- 3.3.1 Textile sensors production according to percolation threshold final study -- 3.3.2 Results-viscosity determination of final conductive dispersion used -- 3.3.3 Results and discussion-tensile properties of yarns -- 3.3.4 Results and discussion-electromechanical properties of textile sensors -- 3.4 Characterization of textile sensors after insertion in textile preforms -- 3.4.1 Textile sensors integration during weaving of 2D fabric, consolidation pretest analysis -- 3.4.2 Results-GF/PP composites with integrated GF/PP sensors -- 3.4.3 GF/PP composites with integrated GF sensors -- 3.4.4 GF/PA66 composites with integrated GF/PA66 or GF sensors -- 3.5 Results and discussion-interface phenomena. | |
3.6 Results and discussion-tomography analysis of textile reinforced 2D thermoplastic composites with integrated textile sensors -- 3.7 Results and discussion-electrical resistance dependence of textile sensors on climatic conditions -- 3.8 Results-SEM and EDS analysis of yarns -- 3.9 Results and discussion-thermal properties of yarns and textile reinforced 2D thermoplastic composites with integrated senso ... -- 3.9.1 Thermogravimetric analysis -- 3.9.2 Results and discussion-microscale combustion calorimetry analysis -- 3.9.3 Results and discussion-limiting oxygen index -- 3.10 Toward wireless structural health monitoring -- 3.11 Predictive maintenance concept -- 3.12 Conclusion -- References -- Further reading -- 4 - Structural health monitoring of processes related to composite manufacturing -- 4.1 Study case 1, interlock weaving process monitoring -- 4.1.1 Design, production, and characterization of sensory yarns -- 4.1.2 Preparation of PEDOT:PSS dedicated to yarns functionalization -- 4.1.2.1 Clevios CPP105D -- 4.1.2.2 Polyvinilic alcohol -- 4.1.2.3 Coating-setup of the process -- 4.1.2.4 Coating method on films -- 4.1.2.5 Coating method on yarns -- 4.1.3 Production of sensors -- 4.1.3.1 General shape -- 4.1.3.2 Glass fibers yarn -- 4.1.3.3 Precoating with polyvinilic alcohol -- 4.1.3.4 Connection yarns -- 4.1.3.5 Sensors protection -- 4.1.4 Tensile testing machine (MTS insight 10) -- 4.1.4.1 Yarns testing procedure -- 4.1.5 Data recording system -- 4.1.5.1 Measurement method-multimeter Keithley 3706 with data acquisition card 3724 -- 4.1.6 Data treatment -- 4.1.6.1 Signal filtering -- 4.1.6.2 Sensors gauge factor calculation -- 4.1.7 Tests and characterization -- 4.1.7.1 Electrical resistivity and computation -- 4.1.7.2 Percolation threshold -- 4.1.8 Mechanical behavior of glass fibers -- 4.1.9 Characterization of coated layers. | |
4.1.9.1 Mechanical behavior. | |
Titolo autorizzato: | Smart textiles for in situ monitoring of composites |
ISBN: | 0-08-102309-X |
0-08-102308-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910583468703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |