top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI-enabled technologies for autonomous and connected vehicles / / Yi Lu Murphey, Ilya Kolmanovsky, and Paul Watta
AI-enabled technologies for autonomous and connected vehicles / / Yi Lu Murphey, Ilya Kolmanovsky, and Paul Watta
Autore Murphey Yi Lu
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (563 pages)
Disciplina 025.063637
Collana Lecture Notes in Intelligent Transportation and Infrastructure
Soggetto topico Artificial intelligence - Environmental applications
Vehicular ad hoc networks (Computer networks)
ISBN 3-031-06780-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Advances, Opportunities and Challenges in AI-enabled Technologies for Autonomous and Connected Vehicles -- 1 Introduction -- 2 Autonomous Vehicles: Current Technologies and Challenges -- 2.1 Levels of Autonomy -- 2.2 AI Technologies in Autonomous Vehicles -- 3 Connectivity and Mobility -- 3.1 Mobility Research -- 3.2 Prediction Model for V2X Communications -- 3.3 Big Data Research in Transportation -- 3.4 Automotive Cybersecurity -- References -- Sensors and Perception -- Semi-autonomous Truck Platooning with a Lean Sensor Package -- 1 Overview -- 2 Literature Survey -- 3 Auburn Platooning System -- 3.1 Dynamic Base Real-Time Kinematic Positioning (DRTK) -- 3.2 Delphi Electronically Scanning Radar (ESR) -- 3.3 Dedicated Short Range Communications -- 3.4 Sensor Fusion -- 4 Testing Campaign -- 5 Results of Sensor Impairment -- 5.1 Effect of a Faulty Radar on Platooning -- 5.2 Effect of a Degraded GPS on Platooning -- 5.3 Effect of Radio Interference -- 5.4 Summary -- 6 Conditional Effects -- 6.1 Occlusions -- 6.2 Rain -- 6.3 Antenna Position -- 6.4 RF Interference -- 6.5 GPS Outage -- 6.6 Road Curvature -- 6.7 Grade -- 7 Conclusion -- References -- Environmental Perception for Intelligent Vehicles -- 1 Sensors -- 1.1 Development of Sensors in Intelligent Autonomous Vehicles -- 1.2 Camera -- 1.3 LiDAR -- 1.4 Radar -- 1.5 Future of Sensors in Intelligent Vehicles -- 2 Data Restoration -- 2.1 RGB Image Restoration -- 2.2 LiDAR Point Cloud Restoration -- 3 Semantic Segmentation -- 3.1 Semantic Segmentation for RGB Images -- 3.2 Semantic Segmentation for RGB-D Images -- 3.3 Semantic Segmentation for LiDAR Point Cloud -- 4 Object Detection -- 4.1 2D Object Detection -- 4.2 2D Object Detection of Fisheye Camera -- 4.3 3D Object Detection -- 5 Object Tracking -- 5.1 Object Tracking for RGB Images.
5.2 Object Tracking for Point Cloud -- 6 Simultaneous Localization and Mapping -- 6.1 SLAM Overview -- 6.2 2D Visual Location and Mapping -- 6.3 3D Visual Location and Mapping -- 7 Multi-sensor Fusion -- 7.1 Multi-sensor Fusion Overview -- 7.2 LiDAR and Camera Fusion -- 7.3 LiDAR and Radar Fusion -- 7.4 Radar and Camera Fusion -- References -- 3D Object Detection for Autonomous Driving -- 1 Introduction -- 2 Recent Advance in 3D Object Detection -- 2.1 Cloud Point-Based Method -- 2.2 Image-Based Method -- 3 Descriptor Enhanced Stereo R-CNN -- 3.1 Overview -- 3.2 Coarse 3D Box Estimation -- 3.3 Unsupervised Learning of the Local Descriptor -- 3.4 Descriptor-Enhanced 3D Box Alignment -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Comparison with State-of-the-Art -- 4.3 Multi-class Comparison with 3DBBX -- 4.4 Ablation Study -- 4.5 Runtime -- 5 Conclusion and Future Work -- References -- Comparative Study on Transfer Learning for Object Classification and Detection -- 1 Introduction -- 2 State-of-the-Art Review in DNNs and Transfer Learning -- 3 Architecture and Characteristics of CNN Models -- 3.1 CNN Models for Object Classification -- 3.2 NN Models for Object Detection -- 4 Transfer Learning for Object Classification and Detection -- 4.1 Transfer Learning for Object Classification -- 4.2 Transfer Learning for Object Detection -- 5 Conclusion -- References -- Future Technology and Research Trends in Automotive Sensing -- 1 Introduction -- 2 Advancements in Radar and Lidar Sensing -- 3 Toward Energy Efficient Edge Computing via Optical Advances -- 4 Conclusion -- References -- Automated Driving Decisions and Control -- Robust AI Driving Strategy for Autonomous Vehicles -- 1 Introduction -- 2 Decision Making: DRL Driving Strategy for Changing Lanes -- 2.1 Reinforcement Learning and Deep Reinforcement Learning an Introduction.
2.2 DRL for Autonomous Driving -- 2.3 Vehicle Dynamics -- 2.4 Simulation Results -- 2.5 Summary -- 3 Executing DRL Decision with Motion Control Algorithm -- 3.1 Longitudinal Motion Control -- 3.2 Lateral Motion Control -- 3.3 Summary -- 4 Generic Safety Filter Design with Control Barrier Functions -- 4.1 Control Barrier Functions -- 4.2 Calculation of Barrier Constraints -- 4.3 Contextual Selection of Decoupled CBF -- 4.4 Examples -- 4.5 Summary -- 5 Integrated Driving Policy with DRL, Motion Control, and CBF Safety Filter -- 5.1 Training Architecture with CBF Safety Filter -- 5.2 Summary -- 6 Summary and Conclusion -- References -- Artificially Intelligent Active Safety Systems -- 1 Introduction -- 1.1 SAE Definitions -- 2 Active Safety Technology -- 2.1 Collision Warning -- 2.2 Collision Intervention -- 2.3 Driving Control Assistance -- 2.4 Parking Assistance -- 2.5 Other Driving Assistance -- 2.6 Beyond Assistance -- 3 Active Safety Potential -- 4 Systems on the Road Today -- 4.1 Methods -- 4.2 Results -- 4.3 Discussion -- 4.4 Conclusion -- 5 Promising AI Applications -- 5.1 Deep Learning -- 5.2 Reinforcement Learning -- 6 Final Thoughts -- References -- Model Predictive Control for Safe Autonomous Driving Applications -- 1 Introduction -- 1.1 Notation -- 2 Problem Description -- 3 Model Predictive Flexible Trajectory Tracking Control -- 4 Tracking an Infeasible Reference -- 5 Safety-Enforcing MPC -- 6 Simulations -- 6.1 ISS: Stability with Infeasible Reference -- 6.2 MPFTC: Ensuring Safety of the Controller -- 7 Conclusions -- References -- Energy-Efficient Autonomous Driving Using Cognitive Driver Behavioral Models and Reinforcement Learning -- 1 Introduction -- 2 Lane Changes for Energy-Efficient AV Driving -- 3 Powertrain Modeling for Battery Electric Vehicles -- 3.1 Model Description -- 3.2 Model Calibration and Validation.
4 Controller Design -- 4.1 Game-Theoretic Traffic Environment -- 4.2 Observation and Action Spaces -- 4.3 Reward Function -- 4.4 Training Algorithm -- 4.5 Training Process -- 4.6 Autonomous Vehicle Control Policy for Benchmarking -- 5 Results -- 5.1 Training for RL-Based Policies -- 5.2 Control Performance -- 6 Conclusions -- References -- Self-learning Decision and Control for Highly Automated Vehicles -- 1 Introduction -- 2 Scalability -- 3 Performance -- 4 Interpretability -- 5 Mixed Model -- 6 Emergency Handling -- 7 Conclusion -- References -- Advanced Driver Assistant Systems -- MAGMA: Mobility Analytics Generated from Metrics on ADAS -- 1 Introduction -- 2 Constraints -- 2.1 Data Collection Costs -- 2.2 Data Generation and Collection Issues -- 3 Determination of Actual Feature Experience -- 4 Determination of Expected Feature Experience -- 5 ADAS Feature Customer Experience Metrics -- 5.1 Binary Feature Availability -- 5.2 Nuanced Feature Availability -- 5.3 Clustering for Outlier Discovery -- 6 Conclusion -- References -- Driver Assistance Systems and Safety-Assessment and Challenges -- 1 Introduction -- 2 The Scenario Approach -- 2.1 The Idea -- 2.2 Elements of a Scenario Based Evaluation -- 3 Scenario Generation and Selection -- 3.1 Scenario Generation -- 3.2 Scenarios from Crash Databases -- 3.3 Automated Scenario Catalogue Learning -- 4 Scenario Parametrization -- 4.1 Numerical Assessment Methods -- 5 Representation of the Surrounding Traffic -- 5.1 Trajectory Prediction -- 5.2 Threat Assessment -- 6 Metrics of Risk -- 7 Outlook -- 7.1 Induced Effects on Other Vehicles -- 7.2 Shields and Emergency Systems -- References -- Factors Influencing Driver Behavior and Advances in Monitoring Methods -- 1 Introduction -- 2 Factors Influencing Driver Behavior -- 2.1 Types of Human Factors -- 2.2 Types of Environmental Factors -- 2.3 Driver Profile.
3 Driver Behavior Monitoring Methods -- 3.1 Intrusive Measuring Methods -- 3.2 Camera Based Measuring Methods -- 3.3 Ergonomic and Body Posture Based Measuring Methods -- 3.4 Vehicle Dynamics Based Measuring Methods -- 3.5 Hybrid Measuring Methods -- 4 Smart Detection Algorithms -- 4.1 Supervised Classification -- 4.2 Unsupervised Classification -- 5 Deep Learning Neural Network Classifiers -- 5.1 Supervised LSTM Classifier -- 5.2 Unsupervised LSTM Classifier -- 6 Summary -- References -- Connected Autonomous Vehicles, Mobility, and Security -- Towards Learning-Based Control of Connected and Automated Vehicles: Challenges and Perspectives -- 1 Introduction -- 2 Multi-Agent Coordination Problem -- 3 Modeling Agent Dynamics -- 3.1 Double Integrator Model -- 3.2 Bicycle Model -- 3.3 Further Extensions -- 3.4 Challenges and Perspectives -- 4 Optimal Agent Coordination -- 4.1 Local Objectives and Constraints -- 4.2 Collision Avoidance -- 4.3 Centralized Optimal Control Problem -- 4.4 Distributed Solution -- 5 Towards Learning-Based Control -- 5.1 Model Uncertainties -- 5.2 Mixed-Traffic Scenarios -- 6 Conclusion -- References -- Virtual Rings on Highways: Traffic Control by Connected Automated Vehicles -- 1 Introduction -- 2 Traffic Control by Connected Automated Vehicles -- 2.1 Simplified Models for Longitudinal Vehicle and Traffic Dynamics -- 2.2 Vehicle Control Influencing Traffic -- 2.3 Traffic Control -- 3 Benefits of Connectivity -- 3.1 Simulation Results -- 3.2 Energy Efficiency -- 4 Dynamics of Traffic Flow -- 4.1 Linearized Dynamics -- 4.2 Transfer Functions -- 5 Stability of Traffic Flow -- 5.1 Stability Conditions -- 5.2 Relationship of the Stability Conditions -- 6 Conclusions -- References -- Socioeconomic Impact of Emerging Mobility Markets and Implementation Strategies -- 1 Introduction -- 2 Theoretical Preliminaries.
2.1 An Introduction to Mechanism Design.
Record Nr. UNINA-9910627280503321
Murphey Yi Lu  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimization and Optimal Control in Automotive Systems / / edited by Harald Waschl, Ilya Kolmanovsky, Maarten Steinbuch, Luigi del Re
Optimization and Optimal Control in Automotive Systems / / edited by Harald Waschl, Ilya Kolmanovsky, Maarten Steinbuch, Luigi del Re
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (xx, 326 pages) : illustrations (some color)
Disciplina 629.23
Collana Lecture Notes in Control and Information Sciences
Soggetto topico Automatic control
Mathematical optimization
Calculus of variations
Automotive engineering
Control and Systems Theory
Calculus of Variations and Optimization
Automotive Engineering
ISBN 3-319-05371-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Trajectory Optimization: A Survey -- Extremum Seeking Methods for Online Automotive Calibration -- Model Predictive control of Autonomous Vehicles -- Approximate Solution of HJBE and Optimal Control in Internal Combustion Engines -- Intelligent Speed Advising Based on Cooperative Traffic Scenario -- Driver Control and Trajectory Optimization Applied to Lane Change Maneuver -- Real-Time Near-Optimal Feedback Control of Aggressive Vehicle Maneuvers -- Applications of Computational Optimal Control to Vehicle Dynamics -- Predictive Cooperative Adaptive Cruise Control: Fuel Consumption Benefits and Implementability -- Topology Optimization of Hybrid Power Trains -- Model-based Optimal Energy Management Strategies for Hybrid Electric Vehicles -- Optimal Energy Management of Automotive Battery Systems Including Thermal Dynamics and Aging -- Optimal Control of Diesel Engines with Waste Heat Recovery System -- Learning Based Approaches to Engine Mapping and Calibration Optimization -- Online Design of Experiments in the Relevant Output Range -- Optimal Control of HCCI -- Optimal Lifting and Path Profiles for a Wheel Loader Considering Engine and Turbo Limitations.
Record Nr. UNINA-9910299489503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui