Fuel processing : for fuel cells / / Gunther Kolb
| Fuel processing : for fuel cells / / Gunther Kolb |
| Autore | Kolb Gunther |
| Pubbl/distr/stampa | Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 |
| Descrizione fisica | 1 online resource (436 p.) |
| Disciplina |
621.31/2429
621.312429 |
| Soggetto topico | Fuel cells |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-02172-9
9786612021725 3-527-62515-1 3-527-62516-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Fuel Processing; Contents; Acknowledgement; 1 Introduction and Outline; 2 Fundamentals; 2.1 Common Fossil Fuels; 2.2 Basic Definitions, Calculations and Legislation; 2.3 The Various Types of Fuel Cells and the Requirements of the Fuel Processor; 2.3.1 PEM Fuel Cells; 2.3.2 High Temperature Fuel Cells; 3 The Chemistry of Fuel Processing; 3.1 Steam Reforming; 3.2 Partial Oxidation; 3.3 Oxidative Steam Reforming or Autothermal Reforming; 3.4 Catalytic Cracking of Hydrocarbons; 3.5 Pre-Reforming of Higher Hydrocarbons; 3.6 Homogeneous Plasma Reforming of Higher Hydrocarbons
3.7 Aqueous Reforming of Bio-Fuels3.8 Processing of Alternative Fuels; 3.8.1 Dimethyl Ether; 3.8.2 Methylcyclohexane; 3.8.3 Sodium Borohydride; 3.8.4 Ammonia; 3.9 Desulfurisation; 3.10 Carbon Monoxide Clean-Up; 3.10.1 Water-Gas Shift; 3.10.2 Preferential Oxidation of Carbon Monoxide; 3.10.3 Methanation; 3.11 Catalytic Combustion; 3.12 Coke Formation on Metal Surfaces; 4 Catalyst Technology for Distributed Fuel Processing Applications; 4.1 A Brief Introduction to Catalyst Technology and Evaluation; 4.1.1 Catalyst Activity; 4.1.2 Catalyst Stability; 4.1.3 Catalyst Coating Techniques 4.1.4 Specific Features Required for Fuel Processing Catalysts in Smaller Scale Applications4.2 Reforming Catalysts; 4.2.1 Catalysts for Methanol Reforming; 4.2.2 Catalysts for Ethanol Reforming; 4.2.3 Overview of Catalysts for Hydrocarbon Reforming; 4.2.4 Catalysts for Natural Gas/Methane Reforming; 4.2.5 Catalysts for Reforming of LPG; 4.2.6 Catalysts for Pre-Reforming of Hydrocarbons; 4.2.7 Catalysts for Gasoline Reforming; 4.2.8 Catalysts for Diesel and Kerosene Reforming; 4.2.9 Cracking Catalysts; 4.2.10 Deactivation of Reforming Catalysts by Sintering 4.2.11 Deactivation of Reforming Catalysts by Coke Formation4.2.12 Deactivation of Reforming Catalysts by Sulfur Poisoning; 4.3 Catalysts for Hydrogen Generation from Alternative Fuels; 4.3.1 Dimethyl Ether; 4.3.2 Methylcyclohexane; 4.3.3 Sodium Borohydride; 4.3.4 Ammonia; 4.4 Desulfurisation Catalysts/Adsorbents; 4.5 Carbon Monoxide Clean-Up Catalysts; 4.5.1 Catalysts for Water-Gas Shift; 4.5.2 Catalysts for the Preferential Oxidation of Carbon Monoxide; 4.5.3 Methanation Catalysts; 4.6 Combustion Catalysts; 5 Fuel Processor Design Concepts; 5.1 Design of the Reforming Process 5.1.1 Steam Reforming5.1.2 Partial Oxidation; 5.1.3 Autothermal Reforming; 5.1.4 Catalytic Cracking; 5.1.5 Pre-Reforming; 5.2 Design of the Carbon Monoxide Clean-Up Devices; 5.2.1 Water-Gas Shift; 5.2.2 Preferential Oxidation of Carbon Monoxide; 5.2.3 Selective Methanation of Carbon Monoxide; 5.2.4 Membrane Separation; 5.2.5 Pressure Swing Adsorption; 5.3 Aspects of Catalytic Combustion; 5.4 Design of the Overall Fuel Processor; 5.4.1 Overall Heat Balance of the Fuel Processor; 5.4.2 Interplay of the Different Fuel Processor or Components; 5.4.3 Overall Water Balance of the Fuel Processor 5.4.4 Overall Basic Engineering of the Fuel Processor |
| Record Nr. | UNINA-9910144379703321 |
Kolb Gunther
|
||
| Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fuel processing : for fuel cells / / Gunther Kolb
| Fuel processing : for fuel cells / / Gunther Kolb |
| Autore | Kolb Gunther |
| Pubbl/distr/stampa | Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 |
| Descrizione fisica | 1 online resource (436 p.) |
| Disciplina |
621.31/2429
621.312429 |
| Soggetto topico | Fuel cells |
| ISBN |
1-282-02172-9
9786612021725 3-527-62515-1 3-527-62516-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Fuel Processing; Contents; Acknowledgement; 1 Introduction and Outline; 2 Fundamentals; 2.1 Common Fossil Fuels; 2.2 Basic Definitions, Calculations and Legislation; 2.3 The Various Types of Fuel Cells and the Requirements of the Fuel Processor; 2.3.1 PEM Fuel Cells; 2.3.2 High Temperature Fuel Cells; 3 The Chemistry of Fuel Processing; 3.1 Steam Reforming; 3.2 Partial Oxidation; 3.3 Oxidative Steam Reforming or Autothermal Reforming; 3.4 Catalytic Cracking of Hydrocarbons; 3.5 Pre-Reforming of Higher Hydrocarbons; 3.6 Homogeneous Plasma Reforming of Higher Hydrocarbons
3.7 Aqueous Reforming of Bio-Fuels3.8 Processing of Alternative Fuels; 3.8.1 Dimethyl Ether; 3.8.2 Methylcyclohexane; 3.8.3 Sodium Borohydride; 3.8.4 Ammonia; 3.9 Desulfurisation; 3.10 Carbon Monoxide Clean-Up; 3.10.1 Water-Gas Shift; 3.10.2 Preferential Oxidation of Carbon Monoxide; 3.10.3 Methanation; 3.11 Catalytic Combustion; 3.12 Coke Formation on Metal Surfaces; 4 Catalyst Technology for Distributed Fuel Processing Applications; 4.1 A Brief Introduction to Catalyst Technology and Evaluation; 4.1.1 Catalyst Activity; 4.1.2 Catalyst Stability; 4.1.3 Catalyst Coating Techniques 4.1.4 Specific Features Required for Fuel Processing Catalysts in Smaller Scale Applications4.2 Reforming Catalysts; 4.2.1 Catalysts for Methanol Reforming; 4.2.2 Catalysts for Ethanol Reforming; 4.2.3 Overview of Catalysts for Hydrocarbon Reforming; 4.2.4 Catalysts for Natural Gas/Methane Reforming; 4.2.5 Catalysts for Reforming of LPG; 4.2.6 Catalysts for Pre-Reforming of Hydrocarbons; 4.2.7 Catalysts for Gasoline Reforming; 4.2.8 Catalysts for Diesel and Kerosene Reforming; 4.2.9 Cracking Catalysts; 4.2.10 Deactivation of Reforming Catalysts by Sintering 4.2.11 Deactivation of Reforming Catalysts by Coke Formation4.2.12 Deactivation of Reforming Catalysts by Sulfur Poisoning; 4.3 Catalysts for Hydrogen Generation from Alternative Fuels; 4.3.1 Dimethyl Ether; 4.3.2 Methylcyclohexane; 4.3.3 Sodium Borohydride; 4.3.4 Ammonia; 4.4 Desulfurisation Catalysts/Adsorbents; 4.5 Carbon Monoxide Clean-Up Catalysts; 4.5.1 Catalysts for Water-Gas Shift; 4.5.2 Catalysts for the Preferential Oxidation of Carbon Monoxide; 4.5.3 Methanation Catalysts; 4.6 Combustion Catalysts; 5 Fuel Processor Design Concepts; 5.1 Design of the Reforming Process 5.1.1 Steam Reforming5.1.2 Partial Oxidation; 5.1.3 Autothermal Reforming; 5.1.4 Catalytic Cracking; 5.1.5 Pre-Reforming; 5.2 Design of the Carbon Monoxide Clean-Up Devices; 5.2.1 Water-Gas Shift; 5.2.2 Preferential Oxidation of Carbon Monoxide; 5.2.3 Selective Methanation of Carbon Monoxide; 5.2.4 Membrane Separation; 5.2.5 Pressure Swing Adsorption; 5.3 Aspects of Catalytic Combustion; 5.4 Design of the Overall Fuel Processor; 5.4.1 Overall Heat Balance of the Fuel Processor; 5.4.2 Interplay of the Different Fuel Processor or Components; 5.4.3 Overall Water Balance of the Fuel Processor 5.4.4 Overall Basic Engineering of the Fuel Processor |
| Record Nr. | UNINA-9910829827703321 |
Kolb Gunther
|
||
| Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||